• Title/Summary/Keyword: 논문 분류

Search Result 12,584, Processing Time 0.044 seconds

Research Paper Classification Scheme based on Word Embedding (워드 임베딩 기반 연구 논문 분류 기법)

  • Dipto, Biswas;Gil, Joon-Min
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.494-497
    • /
    • 2021
  • 텍스트 분류(text classification)는 원시 텍스트 데이터로부터 정보를 추출할 수 있는 기술에 기반하여 많은 양의 텍스트 데이터를 관심 영역으로 분류하는 것으로 최근에 각광을 받고 있다. 본 논문에서는 워드 임베딩(word embedding) 기법을 이용하여 특정 분야의 연구 논문을 분류하고 추천하는 기법을 제안한다. 워드 임베딩으로 CBOW(Continuous Bag-of-Word)와 Sg(Skip-gram)를 연구 논문의 분류에 적용하고 기존 방식인 TF-IDF(Term Frequency-Inverse Document Frequency)와 성능을 비교 분석한다. 성능 평가 결과는 워드 임베딩에 기반한 연구 논문 분류 기법이 TF-IDF에 기반한 연구 논문 분류 기법보다 좋은 성능을 가진다는 것을 나타낸다.

Feature Selection and Classification of Web Pages (웹 페이지에서의 자질 선택과 분류)

  • 송무희;임수연;박성배;강동진;이상조
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.796-798
    • /
    • 2004
  • 본 논문에서는 웹 문서의 분류 성능을 향상시키기 위해 웹 페이지에서의 자질선택과 그에 따른 웹 문서 분류 방법을 제안한다. 문서 분류에는 문서에 포함된 단어를 분류 자질로 사용하게 되며 이때 한 문서의 모든 단어를 분류 자질로 이용한다고 좋은 성능을 보인다고 보장할 수는 없다. 그러므로 문서에 필요한 단어만을 자동으로 추출하여 문서데이터의 자질을 축소하는 작업이 필요하다. 따라서 본 논문에서는 모집군 내의 자질벡터의 범위가 큰 것을 적은 수의 주요성분으로 감소시키기 위해 통계적 분석 기법중의 하나인 주성분분석 방법을 이용하여 자질감소와 그에 따른 문서분류의 성능 향상을 실험을 통하여 보인다. 야후 스포츠 뉴스 웹 페이지가 분류를 위해 사용되었으며, 분류기로는 Naive Bayesian 분류 방법을 사용하였다. 실험 결과를 통해 본 논문에서 제안한 뉴스 웹페이지 분류 방법이 스포츠 뉴스 데이터 군에서 만족할 만한 분류 정확도를 제공한다는 것을 알 수 있다.

  • PDF

Automatic Text Categorization using difference TTF and ITTF (TTF와 ITTF의 차를 이용한 자동 문서 분류)

  • 이상철;하진영
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.133-135
    • /
    • 2001
  • 본 논문에서는 일반적으로 Word Based Matching 방법에서 많이 쓰이는 TFIDF 방법대신에 TTF(Total Term Frequency)와 ITTF(Inverse Total Term Frequecy) 에 가중치를 주어 문서분류의 정확도를 높이는 방법을 제안하고자 한다. TFIDF방법에서 IDF는 역문헌빈도를 나타내는데 Term에 대한 빈도비율의 공정성이 떨어져 문서 분류의 정확도에 한계가 있다. 본 논문에서 제시하는 문서 분류방법은 TTF와 ITTF에 각각의 가중치를 준 후에 차연산 이용하여 문서를 분류하는 것이다. 이러한 방법의 특징은 IDF를 사용할 때 보다 각 카테고리에 있는 term, 즉 단어의 중요도에 대한 가중치를 좀 더 공평하게 줌으로써 문서의 분류를 높일 수 있다. 본 논문에서는 조선일보의 카테고리를 사용하였으며 조선일보의 기사를 대상으로 문서 자동 분류 실험을 수행하였다. 실험 결과 TFIDF보다 본 논문에서 제안한 방법이 문서 분류에 높은 정확도를 나타냄을 보였다.

  • PDF

Classification of Korean Parts-of-Speech for Korean-English Machine Translation (한.영 기계번역을 위한 한국어 품사 분류)

  • 송재관;박찬곤
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10c
    • /
    • pp.165-167
    • /
    • 1998
  • 본 논문에서는 한.영 기계번역을 위한 한국어 품사 분류를 한다. 한국어 표준문법에서 제시되는 품사 분류 기준은 의미, 기능, 형식의 세 가지 기준을 적용하고 있으며, 자연언어처리에서도 같은 분류 기준을 바탕으로 하고 있다. 품사 분류에 여러 가지 기준을 적용하는 것은 문법구조 이해 및 품사 분류를 어렵게 한다. 또한 한.영 기계번역시 품사의 불일치로 전처리가 필요하다. 이러한 문제를 해결하기 위하여 본 논문에서는 하나의 기준을 적용하여 품사 분류를 한다. 방법으로 한국어 표준문법에 의하여 말뭉치에 태깅하고 문제점을 찾아내며, 새로운 기준에 의하여 품사 분류를 한다. 본 논문에서 분류된 품사는 한국어 문장에서 통사적 역할이 동일하고, 영에서의 사전 품사와 동일하다. 또한 품사 분류의 모호성을 제거하고, 한국어의 문장 구조를 명확히 표현하며, 한.영 기계번역시 패턴 매칭에 의한 목적언어 생성이 가능하다.

  • PDF

A Topic Classification System in cQA Services Based on Semi-Automatic Learning Using Wikipedia (위키피디아를 이용한 반자동 학습 기반의 cQA 서비스 주제 분류 시스템)

  • Kim, Taehyun
    • Annual Conference on Human and Language Technology
    • /
    • 2015.10a
    • /
    • pp.139-141
    • /
    • 2015
  • 본 논문은 커뮤니티 기반의 질의-응답 서비스에서 사용자 질의의 주제를 분류하는 시스템을 소개한다. 커뮤니티 기반의 질의-응답 서비스는 분야에 따라 다양한 주제를 가질 수 있으며 오늘 날 사용자 질의의 주제 분류에는 통계 기반의 분류 방법이 많이 이용되고 있다. 통계 기반의 분류 방법으로 사용자 질의를 분류하기 위해서는 주제에 적합한 대량의 학습 말뭉치가 필요하다. 주제에 적합한 대량의 학습 말뭉치를 사람이 직접 구축하는 것은 많은 시간과 비용이 든다. 따라서 본 논문에서는 이러한 문제를 해결하기 위해 위키피디아 문서를 Supervised K-means Clustering 기법으로 주제별로 분류함으로써 학습 말뭉치를 반자동으로 구축하는 방법을 제안한다. 그 다음, 생성된 학습 말뭉치로 지지 벡터 기계를 학습하여 사용자 질의의 주제를 분류하게 된다. 위키피디아 문서와 사용자 질의는 다른 도메인의 문서임에도 불구하고 본 논문의 시스템으로 사용자 질의의 주제를 분류한 결과 77.33%의 정확도를 보였다.

  • PDF

An Analytical Study on Automatic Classification of Domestic Journal articles Based on Machine Learning (기계학습에 기초한 국내 학술지 논문의 자동분류에 관한 연구)

  • Kim, Pan Jun
    • Journal of the Korean Society for information Management
    • /
    • v.35 no.2
    • /
    • pp.37-62
    • /
    • 2018
  • This study examined the factors affecting the performance of automatic classification based on machine learning for domestic journal articles in the field of LIS. In particular, In view of the classification performance that assigning automatically the class labels to the articles in "Journal of the Korean Society for Information Management", I investigated the characteristics of the key factors(weighting schemes, training set size, classification algorithms, label assigning methods) through the diversified experiments. Consequently, It is effective to apply each element appropriately according to the classification environment and the characteristics of the document set, and a fairly good performance can be obtained by using a simpler model. In addition, the classification of domestic journals can be considered as a multi-label classification that assigns more than one category to a specific article. Therefore, I proposed an optimal classification model using simple and fast classification algorithm and small learning set considering this environment.

Applying Academic Department Classification to Theses and Dissertations Retrieval (학과분류체계의 학위논문검색 적용에 관한 연구)

  • Shim, Won-Sik;Kim, Sung-Hwan
    • Journal of the Korean Society for information Management
    • /
    • v.24 no.4
    • /
    • pp.153-171
    • /
    • 2007
  • This study suggests that improvement of theses and dissertations retrieval can be made by applying appropriate academic department classification. We applied the Korea Research Institute for Vocational Education and Training(KRIVET)'s department classification to these and dissertations being serviced by Korea Education & Research Information Service(KERIS). The results show that the chosen classification appropriately represents diverse academic department information contained in the theses and dissertations either published or used within the recent three year period. The study also makes a number of suggestions that will facilitate the application of an academic department classification to a live system.

Comparison and Analysis of Subject Classification for Domestic Research Data (국내 학술논문 주제 분류 알고리즘 비교 및 분석)

  • Choi, Wonjun;Sul, Jaewook;Jeong, Heeseok;Yoon, Hwamook
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.8
    • /
    • pp.178-186
    • /
    • 2018
  • Subject classification of thesis units is essential to serve scholarly information deliverables. However, to date, there is a journal-based topic classification, and there are not many article-level subject classification services. In the case of academic papers among domestic works, subject classification can be a more important information because it can cover a larger area of service and can provide service by setting a range. However, the problem of classifying themes by field requires the hands of experts in various fields, and various methods of verification are needed to increase accuracy. In this paper, we try to classify topics using the unsupervised learning algorithm to find the correct answer in the unknown state and compare the results of the subject classification algorithms using the coherence and perplexity. The unsupervised learning algorithms are a well-known Hierarchical Dirichlet Process (HDP), Latent Dirichlet Allocation (LDA) and Latent Semantic Indexing (LSI) algorithm.

Design of Optimal Fuzzy Rule-base Systems with Genetic Algorithm (유전알고리즘을 이용한 최적퍼지 규칙베이스 시스템의 설계)

  • Kim, Jong-Ryul
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.10c
    • /
    • pp.439-442
    • /
    • 2007
  • 본 논문은 퍼지 분류를 위한 퍼지 규칙베이스 시스템에 대한 최적화 해법으로서 유전 알고리즘에 대해 살펴본다. 즉 퍼지 규칙베이스를 이용하는 퍼지 분류 시스템을 최적화률 하는 유전 알고리즘을 제안한다. 본 논문에서 다루는 최적화는 추출되는 퍼지 규칙의 수와 퍼지 분류 시스템의 입력 패턴을 정확하게 분류하는 지에 대한 성능을 포괄적으로 수행하는 것을 의미한다. 마지막으로 본 논문에서 제안하는 유전 알고리즘을 이용하여 수치실험을 수행하고 그 결과를 통해 제안하는 알고리즘의 유효성과 효율성을 생성된 퍼지 규칙의 수와 퍼지 분류 시스템의 성능의 관점에서 논의한다.

  • PDF

An Analytical Study on Performance Factors of Automatic Classification based on Machine Learning (기계학습에 기초한 자동분류의 성능 요소에 관한 연구)

  • Kim, Pan Jun
    • Journal of the Korean Society for information Management
    • /
    • v.33 no.2
    • /
    • pp.33-59
    • /
    • 2016
  • This study examined the factors affecting the performance of automatic classification for the domestic conference papers based on machine learning techniques. In particular, In view of the classification performance that assigning automatically the class labels to the papers in Proceedings of the Conference of Korean Society for Information Management using Rocchio algorithm, I investigated the characteristics of the key factors (classifier formation methods, training set size, weighting schemes, label assigning methods) through the diversified experiments. Consequently, It is more effective that apply proper parameters (${\beta}$, ${\lambda}$) and training set size (more than 5 years) according to the classification environments and properties of the document set. and If the performance is equivalent, I discovered that the use of the more simple methods (single weighting schemes) is very efficient. Also, because the classification of domestic papers is corresponding with multi-label classification which assigning more than one label to an article, it is necessary to develop the optimum classification model based on the characteristics of the key factors in consideration of this environment.