• Title/Summary/Keyword: 논리규칙

Search Result 290, Processing Time 0.029 seconds

Transforming an Entity - Relationship Model into an Object - Oriented Database Model Depending on the Role of Relationship (관계 역할에 따른 개체 - 관계 모델의 객체지향 데이타베이스 모델로 변환)

  • Kim, Sam-Nam;Lee, Hong-Ro;Ryu, Keun-Ho
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.7
    • /
    • pp.1665-1680
    • /
    • 1997
  • The Entity-Relationship (E-R) model is widely used not only to increase understanding between user and designer, but also to model the relationship of real world data appropriately when designing database system in many application areas. It should be then transformed into an Object-Oriented database model which gives good merits to represent and manipulate data efficiently. Therefore, a method of transforming an E-R model into an Object-Oriented database model should be studied, but without losing any semantics of concept for the E-R model. This paper not only deals with transformation rules taking as input the elements of E-R model and delivering the elements of an Object-Oriented database model, but also improves the concept of generalization and aggregation inheritance. The paper also presents a method of transformation of relationship depending on these rules. The proposed method that obtains Object-Oriented database schema from an E-R model with preserving the properties of the E-R model is shown with examples. The method presented is able to be used to the logical database design.

  • PDF

Design of a Fuzzy Classifier by Repetitive Analyses of Multifeatures (다중 특징의 반복적 분석에 의한 퍼지 분류기의 설계)

  • 신대정;나승유
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.6 no.3
    • /
    • pp.14-24
    • /
    • 1996
  • A fuzzy classifier which needs various analyses of features using genetic algorithms is proposed. The fuzzy classifier has a simple structure, which contains a classification part based on fuzzy logic theory and a rule generation ation padptu sing genetic algorithms. The rule generation part determines optimal fuzzy membership functions and inclusior~ or exclusion of each feature in fuzzy classification rules. We analyzed recognition rate of a specific object, then added finer features repetitively, if necessary, to the object which has large misclassification rate. And we introduce repetitive analyses method for the minimum size of string and population, and for the improvement of recognition rates. This classifier is applied to three examples of the classification of iris data, the discrimination of thyroid gland cancer cells and the recognition of confusing handwritten and printed numerals. In the recognition of confusing handwritten and printed numerals, each sample numeral is classified into one of the groups which are divided according to the sample structure. The fuzzy classifier proposed in this paper has recognition rates of 98. 67% for iris data, 98.25% for thyroid gland cancer cells and 96.3% for confusing handwritten and printed numeral!;.

  • PDF

Image Recognition by Fuzzy Logic and Genetic Algorithms (퍼지로직과 유전 알고리즘을 이용한 영상 인식)

  • Ryoo, Sang-Jin;Na, Chul-Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.5
    • /
    • pp.969-976
    • /
    • 2007
  • A fuzzy classifier which needs various analyses of features using genetic algorithms is proposed. The fuzzy classifier has a simple structure, which contains a classification part based on fuzzy logic theory and a rule generation part using genetic algorithms. The rule generation part determines optimal fuzzy membership functions and inclusion or exclusion of each feature in fuzzy classification rules. We analyzed recognition rate of a specific object, then added finer features repetitively, if necessary, to the object which has large misclassification rate. And we introduce repetitive analyses method for the minimum size of string and population, and for the improvement of recognition rates. This classifier is applied to two examples of the recognition of iris data and the recognition of Thyroid Gland cancer cells. The fuzzy classifier proposed in this paper has recognition rates of 98.67% for iris data and 98.25% for Thyroid Gland cancer cells.

A Study on Chinese Character Expressions of Dynamic Poster Design Based on Kinetic Typography Principle - Focused on '24 Solar Terms' Theme Poster - (키네틱 타이포그래피 원리에 기반을 둔 다이나믹 포스터 디자인의 한자 표현방식에 관한 연구 - '24절기' 테마 포스터를 중심으로 -)

  • Chu, Ziyi;Park, Yong-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.10
    • /
    • pp.195-212
    • /
    • 2022
  • Based on the kinetic typography principle and the structure features of Chinese characters, this study took the Chinese'24 solar terms' theme dynamic poster as the research object, explored the visual expression of dynamic Chinese characters, and tried to summarize the visual expression law of Chinese characters in dynamic poster design. It can be found that, there could be 6 different types of Chinese character expressions in the 24 solar terms poster design. Among them, 'Drawing' design method has the meaning of text structure and form expression, and 'Assembling' design method has the meaning of text stroke and texture association, also, 'Forming' design method bring its meaning through stroke deformation, 'Transforming' design method conveys the content through text disintegration, 'Replacing' design method mainly bring the meaning through simulation, while 'Rotation' design method always express through visual three-dimensional and space. Finally, the findings could not only provide analytical logic and methods for the expression of Chinese characters in dynamic poster design, but also fill the lack of formative research on dynamic Chinese characters, which hopefully provide basic information for the research related to dynamic Chinese character structure, as well as the dynamic poster designers.

Position Control of Brushless DC Motor using Single Input Fuzzy Variable Structure Controller (단일 입력 퍼지가변구조제어기에 의한 BLDC 모터의 위치제어)

  • 배준성;최병재;이대식
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.489-492
    • /
    • 2000
  • 브러쉬없는 직류전동기의 위치제어를 위한 퍼지가변구조제어기를 설계한다. 특히 본 논문에서는 기존의 퍼지제어 기법에서 얻을수 있는 특징으로부터 하나의 전건부 변수만을 가지는 간단한 퍼지논리제어기의 설계를 기술한다. 가변구조제어는 시스템의 파라메터 변화나 외란에 둔감한 특성을 갖는다. 하지만 리칭페이스에서는 문제가 된다. 이를 개선하기 위하여 본 논문에서는 지수항을 추가한 비선형 슬아이딩면을 구성한다. 그리고 나서 비선형적 슬라이딩면과 슬라이딩면의 변화율을 입력으로하는 퍼지 제어기를 설계한다. 이러한 2-입력 퍼지가변구조제어기의 제어 규칙표로부터 슬라이딩면 하나만을 입력으로 가지는 단일입력 퍼지 가변구조 제어기를 설계한다. 이들 제어기의 성능을 입증하기 위하여 시뮬레이션과 실험을 수행한다.

  • PDF

A Study on the CAM Designed by Adopting Best-Match Method using Parallel Processing Architecture (병렬 처리 구조를 이용한 최적 정합 방식 CAM 설계에 관한 연구)

  • 김상복;박노경;차균현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.6
    • /
    • pp.1056-1063
    • /
    • 1994
  • In this paper a content addressable memory (CAM) is designed by adopting best-match method. It has a single processing element(PE) architecture with high computational efficiency and throughput. It is composed of three main functional blocks(input MUX, best-match CAM, control part). It support fully parallel processing. Logic simulation is completed by using QUICKSIM, Circuit simulation is performanced by using HSPICE. Its layout is based on the ETRI 3 m n-well process design rules. Its maximum operating frequency is 20 MHz.

  • PDF

A study on the array of SNOSFET unit cells for the novolatile EEPROM (비휘발성 EEPROM을 위한 SNOSFET 단위 셀의 어레이에 관한 연구)

  • 강창수;이형옥;이상배;서광열
    • Electrical & Electronic Materials
    • /
    • v.6 no.1
    • /
    • pp.28-33
    • /
    • 1993
  • Short channel 비휘발성 SNOSFET EEPROM 기억소자를 CMOS 1 Mbit 설계규칙에 따라 제작하고 특성과 응용을 조사하였다. 논리 어레이를 실현하기 위한 SNOSFET는 4단자와 2단자 비휘발성 메모리 셀로 구성하고 이에 대한 기록과 소거 특성을 조사하였다. 결과적으로 4단자 소자와 2단자 소자의 메모리 윈도우는 각각 기록과 소거에 의하여 "1"상태와 "0"상태로 동작되는 저전도 상태와 거전도 상태를 나타냈다. 4단자 2 x 2 메트릭스 어레이는 양극성으로 동작하였으며 2단자 2 x 2 메트릭스 어레이는 단극성으로 동작하였다.릭스 어레이는 단극성으로 동작하였다.

  • PDF

Uncertain Knowledge Processing for Oriental Medicine Diagnostic Model (한의 진단 모델의 추론 과정에서 발생하는 불확실한 진단 지식의 처리)

  • Shin, Yang-Kyu
    • Journal of the Korean Data and Information Science Society
    • /
    • v.8 no.1
    • /
    • pp.1-7
    • /
    • 1997
  • The inference process for medical expert system is mostly formed by diagnostic knowledge on the if-then rule base. Oriental medicine diagnostic knowledge, however, may involve uncertain knowledge caused by ambiguous concept. In this paper, we analyze an oriental medicine diagnostic process by a rule-based inference system, and propose a method for representing and processing uncertain oriental medicine diagnostic knowledge using CLP( R ) which is a kind of constraint satisfaction program.

  • PDF

Development of an expert system for a PC's fault diagnosis using causal reasoning

  • 양승정;이원영
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.10a
    • /
    • pp.23-26
    • /
    • 1996
  • 인과관계적 추론 방법(causal reasoning)은 시스템 고장을 시스템 구조나 행동의 원인 상과관계를 사용하여 분류하는 것으로서 관측된 행도오가 기대행동의 차이를 조사하여 인식하게 된다. 본 연구에서는 징후(symptom)를 분석 및 분류할 때에 시스템의 기능적인 계층구조를 이용한다. 전문가시스템의 구축은 KAPPA-PC를 사용하였다. KAPPA-PC는 규칙 및 논리에 근거한 방법과 객체지향적 지식 표현 기법을 사용한다. 대다수의 사람들이 일상적으로 사용하는 PC(Personal Computer)는, 특히 하드웨어에서 고장이 일어났을 때 수리자의 노우하우(know-how)로 고쳐지는 경우가 대부분이다. 본 논문에서는 자주 일어날수 있는 PC의 하드웨어적 고장에 일반사용자들이 쉽게 접근해서 그 원인과 진단을 내릴 수 있도록 했으며 작은 고장 원인이 전체 시스템구조내에서 어떤 상관관계를 가지는지를 고찰하였다.

  • PDF

A rule base derivation method using neural networks for the fuzzy logic control of robot manipulators (로봇 매니퓰레이터의 퍼지논리 제어를 위한 신경회로망을 사용한 규칙 베이스 유도방법)

  • 이석원;경계현;김대원;이범희;고명삼
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.441-446
    • /
    • 1992
  • We propose a control architecture for the fuzzy logic control of robot manipulators and a rule base derivation method for a fuzzy logic controller(FLC) using a neural network. The control architecture is composed of FLC and PD(positional Derivative) controller. And a neural network is designed in consideration of the FLC's structure. After the training is finished by BP(Back Propagation) and FEL(Feedback Error Learning) method, the rule base is derived from the neural network and is reduced through two stages - smoothing, logical reduction. Also, we show the performance of the control architecture through the simulation to verify the effectiveness of our proposed method.

  • PDF