• Title/Summary/Keyword: 노멀 부탄

Search Result 2, Processing Time 0.017 seconds

The Effect of N-butane and Propane on Performance and Emissions of a SI Engine Operated with LPG/DME Blended Fuel (LPG/DME 혼합연료를 사용하는 전기점화 기관에서 LPG 성분이 엔진 성능 및 배기특성에 미치는 영향)

  • Lee, Seok-Hwan;Oh, Seung-Mook;Choi, Young;Kang, Kern-Yong;Choi, Won-Hak;Cha, Kyoung-Ok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.35-42
    • /
    • 2009
  • In this study, a spark ignition engine operated with LPG and DME blended fuel was studied experimentally. The effect of n-butane and propane on performance and emissions of a SI engine fuelled by LPG/DME blended fuel were examined. Stable engine operation was achieved for a wide range of engine loads with propane containing LPG/DME blended fuel compare to butane containing LPG/DME blended fuel since octane number of propane was much higher than that of butane. Also, engine output operated with propane containing blended fuel was comparable to pure LPG fuel operation. Engine output power was decreased and break specific fuel consumption (BSFC) was increased with the blended fuel since the energy content of DME was much lower than that of LPG. Considering the results of engine output power, bsfc, and exhaust emissions, the propane containing LPG/DME blended fuel could be used as an alternative fuel for LPG.

A Study on Combustion and Emission Characteristics of Diesel Generator Fuelled with Coffee Ground Pyrolysis Oil (커피박 열분해유를 연료로 사용하는 디젤 발전기의 연소 및 배출물 특성에 관한 연구)

  • PARK, JUNHA;LEE, SEOKHWAN;KANG, KERNYONG;LEE, JINWOOK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.6
    • /
    • pp.567-577
    • /
    • 2019
  • Due to the depletion of fossil fuels and environmental pollution, demand for alternative energy is gradually increasing. Among the various methods, a method to convert biomass into alternative fuel has been proposed. The bio-fuel obtained from biomass through pyrolysis process is called pyrolysis oil (PO) or bio-oil. Because PO is difficult to use directly in conventional engines due to its poor fuel properties, various methods have been proposed to upgrade pyrolysis-oil. The simplest approach is to mix it with conventional fossil fuels. However, due to their different polarity of PO and fossil fuel, direct mixing is impossible. To resolve this problem, emulsification of two fuels with a proper surfactant was proposed, but it costs additional time and cost. Alternatively, the use of alcohol fuels as an organic solvent significantly improve the fuel properties such as fuel stability, calorific value and viscosity. In this study, blends of diesel, n-butanol, and coffee ground pyrolysis oil (CGPO) which is one of the promising PO, was applied to diesel generator. Combustion and emissions characteristics of blended fuels were investigated under the entire load range. Experimental results show that ignition delay is similar to that of diesel at high load. Although, hydrocarbon and carbon monoxide emissions are comparable to diesel, significant reduction of nitrogen oxides and particulate matter emissions were observed.