• Title/Summary/Keyword: 노드/링크 네트워크 모델

Search Result 37, Processing Time 0.02 seconds

A Graph Layout Algorithm for Scale-free Network (척도 없는 네트워크를 위한 그래프 레이아웃 알고리즘)

  • Cho, Yong-Man;Kang, Tae-Won
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.5_6
    • /
    • pp.202-213
    • /
    • 2007
  • A network is an important model widely used in natural and social science as well as engineering. To analyze these networks easily it is necessary that we should layout the features of networks visually. These Graph-Layout researches have been performed recently according to the development of the computer technology. Among them, the Scale-free Network that stands out in these days is widely used in analyzing and understanding the complicated situations in various fields. The Scale-free Network is featured in two points. The first, the number of link(Degree) shows the Power-function distribution. The second, the network has the hub that has multiple links. Consequently, it is important for us to represent the hub visually in Scale-free Network but the existing Graph-layout algorithms only represent clusters for the present. Therefor in this thesis we suggest Graph-layout algorithm that effectively presents the Scale-free network. The Hubity(hub+ity) repulsive force between hubs in suggested algorithm in this thesis is in inverse proportion to the distance, and if the degree of hubs increases in a times the Hubity repulsive force between hubs is ${\alpha}^{\gamma}$ times (${\gamma}$??is a connection line index). Also, if the algorithm has the counter that controls the force in proportion to the total node number and the total link number, The Hubity repulsive force is independent of the scale of a network. The proposed algorithm is compared with Graph-layout algorithm through an experiment. The experimental process is as follows: First of all, make out the hub that exists in the network or not. Check out the connection line index to recognize the existence of hub, and then if the value of connection line index is between 2 and 3, then conclude the Scale-free network that has a hub. And then use the suggested algorithm. In result, We validated that the proposed Graph-layout algorithm showed the Scale-free network more effectively than the existing cluster-centered algorithms[Noack, etc.].

A multi carrier selectable routing scheme by normalized transmission characteristics (MCS-NTC) at marine multi-carrier MANETs (다중캐리어 해상 MANET에서 여러 캐리어 선택가능하고 정규화된 전송특성에 의한 경로배정방식)

  • Son, Jooyoung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.199-204
    • /
    • 2013
  • Marine data communications still look for a novel data communication system at sea because of the restriction of bandwidths and costs of current carriers. In order to make the most efficient use of the broadband land carriers at sea, this paper proposes a routing scheme (MCS-NTC) at a marine MANET model. The routing scheme optimizes the route by choosing optimal nodes and carriers among the traditional and land carriers based on normalized transmission characteristics of applications and carriers. The performance is compared with the max-win method (OMH-MW) scheme considering the specific values of transmission characteristics. The result shows that our scheme derives more efficient routes than the previous one in terms of the transmission characteristics such as bandwidth, cost, delay, the number of hops and carriers.

Performance Analysis of the Amplify-and-Forward Scheme under Interference Constraint and Physical Layer Security (물리 계층 보안과 간섭 제약 환경에서 증폭 후 전송 기법의 성능 분석)

  • Pham, Ngoc Son;Kong, Hyung-Yun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.179-187
    • /
    • 2014
  • The underlay protocol is a cognitive radio method in which secondary or cognitive users use the same frequency without affecting the quality of service (QoS) for the primary users. In addition, because of the broadcast characteristics of the wireless environment, some nodes, which are called eavesdropper nodes, want to illegally receive information that is intended for other communication links. Hence, Physical Layer Security is applied considering the achievable secrecy rate (ASR) to prevent this from happening. In this paper, a performance analysis of the amplify-and-forward scheme under an interference constraint and Physical Layer Security is investigated in the cooperative communication mode. In this model, the relays use an amplify-and- forward method to help transmit signals from a source to a destination. The best relay is chosen using an opportunistic relay selection method, which is based on the end-to-end ASR. The system performance is evaluated in terms of the outage probability of the ASR. The lower and upper bounds of this probability, based on the global statistical channel state information (CSI), are derived in closed form. Our simulation results show that the system performance improves when the distances from the relays to the eavesdropper are larger than the distances from the relays to the destination, and the cognitive network is far enough from the primary user.

Energy-Efficient Multipath Routing Protocol for Supporting Mobile Events in Wireless Sensor Networks (무선 센서 네트워크에서 이동 이벤트를 지원하기 위한 에너지 효율적인 멀티패스 라우팅 프로토콜)

  • Kim, Hoewon;Lee, Euisin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.12
    • /
    • pp.455-462
    • /
    • 2016
  • Wireless sensor networks have been researched to gather data about events on sensor fields from sources at sinks. Multipath routing is one of attractive approaches to reliably send data against the problem of frequent breakages on paths from sources to sinks due to node and link failures. As mobile events such as humans, animals, and vehicles are considered, sources may be continuously generated according to the movement of the mobile event. Thus, mobile events provide new challenging issue in multipath routing. However, the research on multipath routing mainly focus on both efficient multipath construction from sources to static sinks and fast multipath reconstruction against path breakages. Accordingly, the previous multipath routing protocols request each source continuously generated by a mobile event to construct individual multipath from the source to sinks. This induces the increase of multipath construction cost in the previous protocols in proportion to the number of source. Therefore, we propose efficient multipath routing protocol for supporting continuous sources generated by mobile events. In the proposed protocol, new source efficiently reconstructs its multipath by exploiting the existing multipath of previous sources. To do this, the proposed protocol selects one among three reconstruction methods: a local reconstruction, a global partial one, and a global full one. For a selection decision, we provide an analytical energy consumption cost model that calculates the summation of both the multipath reconstruction cost and the data forwarding cost. Simulation results show that the proposed protocol has better performance than the previous protocol to provide multipath routing for mobile events.

Analysis of Block FEC Symbol Size's Effect On Transmission Efficiency and Energy Consumption over Wireless Sensor Networks (무선 센서 네트워크에서 전송 효율과 에너지 소비에 대한 블록 FEC 심볼 크기 영향 분석)

  • Ahn, Jong-Suk;Yoon, Jong-Hyuk;Lee, Young-Su
    • The KIPS Transactions:PartC
    • /
    • v.13C no.7 s.110
    • /
    • pp.803-812
    • /
    • 2006
  • This paper analytically evaluates the FEC(Forward Error Correction) symbol size's effect on the performance and energy consumption of 802.11 protocol with the block FEC algorithm over WSN(Wireless Sensor Network). Since the basic recovery unit of block FEC algorithms is symbols not bits, the FEC symbol size affects the packet correction rate even with the same amount of FEC check bits over a given WSN channel. Precisely, when the same amount of FEC check bits are allocated, the small-size symbols are effective over channels with frequent short bursts of propagation errors while the large ones are good at remedying the long rare bursts. To estimate the effect of the FEC symbol site, the paper at first models the WSN channel with Gilbert model based on real packet traces collected over TIP50CM sensor nodes and measures the energy consumed for encoding and decoding the RS (Reed-Solomon) code with various symbol sizes. Based on the WSN channel model and each RS code's energy expenditure, it analytically calculates the transmission efficiency and power consumption of 802.11 equipped with RS code. The computational analysis combined with real experimental data shows that the RS symbol size makes a difference of up to 4.2% in the transmission efficiency and 35% in energy consumption even with the same amount of FEC check bits.

Analysis the Overhead of IEEE 802.11 RTS/CTS Handshake in Ad-hoc Networks Based Multipath Routing (다중경로 라우팅 기반 Ad-hoc Networks에서 IEEE 802.11 RTS/CTS 핸드세이크 오버헤드 분석)

  • Kim, Hyun-Chang;Lee, Jai-Yong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.6
    • /
    • pp.33-44
    • /
    • 2008
  • Multipath routing protocols with load balance, fault tolerance, aggregated bandwidth in Ad-hoc Networks provide improved throughput and reliable route as compared with singlepath routing protocols. However, multipath routing protocols have not been explored thoroughly in the domain of overhead in Ad-hoc Networks. In this paper, we analyze and compare on-demand singlepath and multipath routing with IEEE 802.11 DCF in terms of Routing overhead and MAC overhead. The results reveals that in comparison with singlepath routing protocol, multipath routing mechanism creates more overheads but provides better performance in congestion and capacity provided that the route length is within a certain upper bound which is derivable. The analytical results are further confirmed by simulation.

Differentiated Lambda Establishment and Wavelength Assignment based on DMS model for QoS guarantees in DWDM Next Generation Internet Backbone Networks (DWDM 차세대 인터넷 백본망에서 DMS 모델 기반의 차등화된 파장할당 및 LSP 설정)

  • Kim, Sung-Un;Lee, Jun-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.9B
    • /
    • pp.760-773
    • /
    • 2003
  • The Internet is evolving from best-effort service toward an integrated or differentiated service framework with quality-of-service (QoS) assurances that are required for new multimedia service applications. Given this increasing demand for high bandwidth Internet with QoS assurances in the coming years, an IP/MPLS-based control plane combined. with a wavelength-routed dense-wavelength division multiplexing (DWDM) optical network is seen as a very promising approach for the realization of future re-configurable transport networks. This paper proposes a differentiated lambda establishment process for QoS guarantees based on the differentiated MPLS service (DMS) model. According to the QoS characteristics of wavelength in optical links and the type of used Optical Cross-Connect (OXC) nodes in DWDM next generation optical Internet backbone network, a differentiated wavelength assignment strategy that considers QoS recovery capability is also suggested.