• Title/Summary/Keyword: 네트워크 혼잡

Search Result 551, Processing Time 0.026 seconds

Congestion Control Mechanism for Efficient Network Environment in WMSN (무선 멀티미디어 센서 네트워크에서 효율적인 네트워크 환경을 위한 혼잡 제어 메커니즘)

  • Park, Jeong-Hyeon;Lee, Sung-Keun;Oh, Won-Geun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.2
    • /
    • pp.289-296
    • /
    • 2015
  • Wireless multimedia sensor network senses and transfers mass multimedia data. Also, it is sensitive to latency. This thesis proposes a routing technique based on traffic priority in order to improve the network efficiency by minimizing latency. In addition, it proposes a congestion control mechanism that uses packet service time, packet inter-arrival time, buffer usage, etc. In this thesis, we verified the reduction of packet latency in accordance with the quality level of packet as a result of the performance analysis through the simulation method. Also, we verified that the proposed mechanism maintained a reliable network state by preventing packet loss due to network overload.

Network Congestion Control Through Adjustment of Data Transmission Time on Smart Grid Networks (스마트 그리드 네트워크에서 데이터 전송시간 조절을 통한 네트워크혼잡 개선 방법)

  • Park, Se-Young;Kim, Mi-Hui
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2012.01a
    • /
    • pp.217-218
    • /
    • 2012
  • 기기간(M2M, Machine-to-Machin) 통신의 한 응용으로서 스마트 그리드 네트워크는 다수의 기기 통신으로 인한 전송 데이터의 방대한 양을 대표적 특징으로 꼽을 수 있다. 이에 현재 사용가능한 통신 기술들을 그대로 사용할 경우, 병목현상 혹은 네트워크 혼잡 등 네트워크 장애 및 전송 지연이 발생할 수 있다. 특히 스마트 그리드 네트워크의 상향 트래픽은 시간조절이 가능한 주기적 미터링 데이터와 지연민감한 이벤트 데이터로 나뉜다. 이에 본 논문에서는 각 트래픽 특성에 따라 트래픽양의 대다수를 이룰 미터링 데이터의 전송시간 조절을 이용한 혼잡제어 기법을 제안한다. 이를 통해 지연민감한 이벤트 데이터의 지연시간 내 전송 보장 확률을 높이고, 트래픽을 분산시킴으로써 전송 효율을 높이고자 한다.

  • PDF

A Network-Aware Congestion Control Scheme for Improving the Performance of C-TCP over HBDP Networks (HBDP 네트워크에서 C-TCP의 성능 향상을 위한 네트워크 적응적 혼잡제어 기법)

  • Oh, Junyeol;Yun, Dooyeol;Chung, Kwangsue
    • Journal of KIISE
    • /
    • v.42 no.12
    • /
    • pp.1600-1610
    • /
    • 2015
  • While today's networks have been shown to exhibit HBDP (High Bandwidth Delay Product) characteristics, the legacy TCP increases the size of the congestion window slowly and decreases the size of the congestion window drastically such that it is not suitable for HBDP Networks. In order to solve this problem with the legacy TCP, many congestion control TCP mechanisms have been proposed. C-TCP (Compound-TCP) is a hybrid TCP which is a synergy of delay-based and loss-based approaches. C-TCP adapts the decreasing rate of the delay window without considering the congestion level, leading to degradation of performance. In this paper, we propose a new scheme to improve the performance of C-TCP. By controlling the increasing and decreasing rates according to the congestion level of the network, our proposed scheme can improve the bandwidth occupancy and fairness of C-TCP. Through performance evaluation, we show that our proposed scheme offers better performance in HBDP networks as compared to the legacy C-TCP.

An Effective RED Algorithm for Congestion Control in Internet (인터넷에서 혼잡제어를 위한 개선된 RED 알고리즘)

  • 정규정;이동호
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.04a
    • /
    • pp.280-282
    • /
    • 2002
  • 기존의 네트워크에서는 혼잡상황이 감지된 이후에 네트워크 성능이 급격하게 저하된다. 이러한 문제를 해결하고자 RED(Random Early Detection)기법이 소개되어 게이트웨이에서 혼잡상황에 대하여 능동적으로 대처할 수 있는 알고리즘이 제시되었다. 하지만, RED는 매개변수 설정이라는 문제가 남아있다. 그리하여, 잘못된 변수값 설정으로 인한 네트워크 성능 저하가 현저하게 발생한다. 본 논문에서는 기존의 RED를 개선한 Effective RED를 제안한다. Effective RED는 RED 알고리즘의 문제점을 개선하여 네트워크의 상황에 맞추어 동적으로 매개 변수 값을 조정하는 알고리즘이다. 그리고, ns를 이용하여 Effective RED의 성능을 검증하였다.

  • PDF

Layer Selection Algorithms of H.264/SVC Streams for Network Congestion Control (네트워크 혼잡 제어를 위한 H.264/SVC 스트림의 계층 선택 알고리즘)

  • Kim, Nam-Yun;Hwang, Ki-Tae
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.1
    • /
    • pp.44-53
    • /
    • 2011
  • H.264/SVC provides scalable video streams which consist of a base layer and one or more enhancement layers. Thus, it can efficiently adapt encoded streams to individual network conditions by dropping some layers of bit streams. However, on a dynamic environment such as the Internet, random packet losses due to network congestion can cause drastic effect on SVC quality. To avoid network congestion, the rate of video streams should be adjusted by carefully selecting a layer of each stream. In this paper, we propose three layer selection algorithms which can avoid network congestion by using the rate-distortion characteristics of streams. Simulation results show that FS(Far-Sighted) algorithm can maximize the overall PSNR value of streams by efficiently using the characteristics of video streams.

A Network Coding Mechanism Minimizing Congestion of Lossy Wireless Links (손실이 있는 무선 링크에서 혼잡을 최소화하는 네트워크 코딩 기법)

  • Oh, Hayoung;Lim, Sangsoon
    • Journal of KIISE:Information Networking
    • /
    • v.41 no.4
    • /
    • pp.186-191
    • /
    • 2014
  • Previous work only focuses on a maximization of network coding opportunity since it can reduce the number of packets in network system. However, it can make congestion in a relay node as each source node may transmit each packet with the maximum transmission rate based on the channel qualities. Therefore, in this paper, we propose CmNC (Congestion minimized Network Coding over unreliable wireless links) performing opportunistic network coding to guarantee the network coding gain with the consideration of the congestion and channel qualities. The relay node selects the best network code set based on the objective function for reducing the packet loss and congestion via a dynamic programming. With Qualnet simulations, we show CmNC is better up to 20% than the previous work.

Minority First Gateway for Protecting QoS of Legitimate Traffic from Intentional Network Congestion (인위적인 네트워크 혼잡으로부터 정상 트래픽의 서비스 품질을 보호하기 위한 소수자 우선 게이트웨이)

  • Ann Gae-Il
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.7B
    • /
    • pp.489-498
    • /
    • 2005
  • A Denial of Sewice (DoS) attack attempts to prevent legitimate users of a sewice from being adequately served by monopolizing networks resources and, eventually, resulting in network or system congestion. This paper proposes a Minority First (MF) gateway, which is capable of guaranteeing the Quality of Service (QoS) of legitimate service traffic under DoS situations. A MF gateway can rapidly determine whether an aggregated flow is a congestion-inducer and can protect the QoS of legitimate traffic by providing high priority service to the legitimate as aggregate flows, and localize network congestion only upon attack traffic by providing low priority to aggregate flows regarded as congestion-inducer. We verify through simulation that the suggested mechanism possesses excellence in that it guarantees the QoS of legitimate traffic not only under a regular DoS occurrence, but also under a Distributed DoS (DDoS) attack which brings about multiple concurrent occurrences of network congestion.

A Design of Hop-by-Hop based Reliable Congestion Control Protocol for WSNs (무선 센서 네트워크를 위한 Hop-by-Hop 기반의 신뢰성 있는 혼잡제어 기법 설계)

  • Heo Kwan;Kim Hyun-Tae;Yang Hae-Kwon;Ra In-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.442-445
    • /
    • 2006
  • In Wireless Sensor Networks(WSNs), a sensor node broadcasts an acquisited data to neighboring other nodes and it makes serious data duplication problem that increases network traffic loads and data loss. This problem is concerned with the conflict condition for supporting both the reliability of data transfer and avoidance of network congestion. To solve the problem, a reliable congestion control protocol is necessary that considers critical factors affecting on data transfer reliability such as reliable data transmission, wireless loss, and congestion loss for supporting effective congestion control in WSNs. In this paper, we proposes a reliable congestion protocol, ratted HRCCP, based on hop-hop sequence number, and DSbACK by minimizing useless data transfers as an energy-saved congestion control method.

  • PDF

Efficient Congestion Detection and Control Algorithm based on Threshold for Wireless Sensor Network (무선 센서 네트워크를 위한 임계치 기반 효율적인 혼잡 탐지 및 제어 알고리즘)

  • Lee, Dae-Woon;Lee, Tae-Woo;Choi, Seung-Kwon;Lee, Joon-Suk;Jin, Guangxun;Lee, Jae-Youp
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.9
    • /
    • pp.45-56
    • /
    • 2010
  • This paper reports a new mechanism for congestion controls. The proposed congestion detection algorithm can be provided with delay and unnecessary energy consumption. Conventional congestion control methods decide congestion by queue occupancy or mean packet arrival rate of MAC layer only, however, our method can perform precise detection by considering queue occupancy and mean packet arrival rate. In addition, the congestion avoiding method according to congestion degree and scheduling method using priority for real time packets are proposed. Finally, simulation results show that proposed congestion detection and control methods outperforms conventional scheduling schemes for wireless sensor network.

Data Congestion Control Using Drones in Clustered Heterogeneous Wireless Sensor Network (클러스터된 이기종 무선 센서 네트워크에서의 드론을 이용한 데이터 혼잡 제어)

  • Kim, Tae-Rim;Song, Jong-Gyu;Im, Hyun-Jae;Kim, Bum-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.12-19
    • /
    • 2020
  • The clustered heterogeneous wireless sensor network is comprised of sensor nodes and cluster heads, which are hierarchically organized for different objectives. In the network, we should especially take care of managing node resources to enhance network performance based on memory and battery capacity constraints. For instances, if some interesting events occur frequently in the vicinity of particular sensor nodes, those nodes might receive massive amounts of data. Data congestion can happen due to a memory bottleneck or link disconnection at cluster heads because the remaining memory space is filled with those data. In this paper, we utilize drones as mobile sinks to resolve data congestion and model the network, sensor nodes, and cluster heads. We also design a cost function and a congestion indicator to calculate the degree of congestion. Then we propose a data congestion map index and a data congestion mapping scheme to deploy drones at optimal points. Using control variable, we explore the relationship between the degree of congestion and the number of drones to be deployed, as well as the number of drones that must be below a certain degree of congestion and within communication range. Furthermore, we show that our algorithm outperforms previous work by a minimum of 20% in terms of memory overflow.