최근 인터넷, 인트라넷과 같은 통신 기술 발전에 따라 거의 모든 시스템이 서로 연결되었고, 사용자들은 손쉽게 정보를 공유할 수 있게 되었다. 따라서 시스템 침입을 통한 데이터의 변형과 인증 받지 않은 접근과 같은 컴퓨터 범죄가 급속도로 증가하고 있다. 그러므로 이러한 컴퓨터 범죄를 막기 위한 침입 탐지 기술 개발은 매우 중요하다. 전통적인 침입 탐지 모델은 단지 네트워크 패킷 데이터만을 사용하고 있으며. 침입탐지 시스템의 성능을 높이기 위해 서로 다른 분류 알고리즘을 결합하는 방법을 사용해왔다. 그러나 이러한 모델은 일반적으로 성능향상에 있어서 제한적이다. 본 논문에서는 침입탐지 시스템의 성능을 개선하기 위해 네트워크 데이터와 시스템 콜 데이터를 융합하는 방법을 제안하였으며. 데이터 융합 모델로서 Multi-Layer Perceptron (MLP)를 사용하였다. 그리고 DARPA 에서 생성한 네트워크 데이터와 본 논문에서 가상으로 생성한 시스템 콜 데이터를 함께 결합하여 모델을 생성 한 뒤 실험을 수행하였다. 본 논문에서의 실험결과로. 단순히 네트워크 데이터만을 사용한 모델에 비해 시스템 콜 데이터를 함께 결합한 모델이 훨씬 더 놓은 인식률을 보인다는 것을 확인할 수 있다
하이퍼네트워크는 하이퍼그래프의 일반화된 모델로 학습과정에 있어 진화적 개념을 도입한 확률 그래프 기반의 기계학습 알고리즘으로서 최근 들어 여러 다양한 분야에 응용되고 있다. 그러나 하이퍼네트워크 모델은 데이터와 모델을 구성하는 하이퍼에지 간의 동등비교를 기반으로 하는 학습과정의 특성상 데이터를 구성하는 인자들이 범주형인 경우에만 학습 및 모델링이 가능하고 실수 값으로 표현된 데이터를 학습하기 위해서는 이산화 등의 전처리가 선행되어야 한다는 한계점이 있다. 하지만 데이터 전처리에 있어 이산화 하는 과정은 필연적으로 정보손실이 발생할 수밖에 없기 때문에 이는 분류 예측 모델의 성능 저하를 유발하는 원인이 될 수 있다. 이러한 기존 하이퍼네트워크 모델의 한계점을 극복하기 위해 본 연구에서는 별도의 데이터 전처리 과정을 거치지 않고 실수 인자로 구성된 데이터의 패턴 학습이 가능한 개선된 하이퍼네트워크 모델을 제안한다. 여러 실험 결과를 통해 제안한 하이퍼네트워크 모델은 기존 하이퍼네트워크 모델에 비해 실수형 데이터에 대한 학습 및 분류 결과 성능이 향상되었을 뿐 아니라, 다른 여러기계학습 방법들에 비해서도 경쟁력 있는 성능이 나타남을 확인하였다.
유전자의 생물학적 기능을 밝히고 세포 내 상호작용을 이해하는 것은 post-genome era의 가장 중요한 작업 중 하나이다. 세포는 서로 다른 컴포넌트들의 상호작용에 의해 아주 복잡한 네트워크를 구성한다. 생화학적 네트워크에는 metabolic, regulatory, signal transduction과 같은 세포의 프로세스를 포함한다. 이러한 생화학적 네트워크들은 서로 다른 정보체계를 가지고 각기 다른 데이터베이스에 분산되어 저장관리 되고 있다. 따라서 생화학적 네트워크 데이터를 체계적으로 효율적으로 저장, 관리하기 위한 데이터베이스에 대한 필요성이 증대되고 있다. 본 논문에서는 기존의 생화학적 네트워크 데이터베이스의 장.단점을 분석하고 객체지향 방식에 입각한 새로운 생화학적 네트워크 데이터의 통합을 위한 시스템 모델을 제시한다. 제안된 시스템 모델은 생화학적 네트워크 데이터에 대한 생물학전 관계를 자연스럽게 표현할 수 있는 객체지향 모델을 사용하였다. 또한 생화학적 네트워크 모델을 묘사하기 위한 응용프로그램 사이의 데이터 교환의 표준언어인 SBML[2]스키마를 기반으로 하고 있다.
이 논문은 Generative Adversarial Network (GAN) 을 이용하여 증진된 이미지 데이터를 평가방식인 Inception Score (IS) 와 Frechet Inception Distance (FID) 계산시 inceptionV3 모델을 활용 하는 방식을 응용하여, 군 폐쇄망 네트워크 데이터를 이미지 형태로 평가하는 방법을 제안한다. 기존 존재하는 이미지 분류 모델들에 레이어를 추가하여 IncetptionV3 모델을 대체하고, 네트워크 데이터를 이미지로 변환 및 학습 하는 방법에 변화를 주어 다양한 시뮬레이션을 진행하였다. 실험 결과, atan을 이용해 8 * 8 이미지로 변환한 데이터에 대해 1개의 덴스 레이어 (Dense Layer)를 추가한 Densenet121를 학습시킨 모델이 네트워크 데이터셋 평가 모델로서 가장 적합하다는 결과를 도출하였다.
사용자와 환경의 변화에 적응하기 위해서 베이지안 네트워크의 다양한 학습 방법들이 연구되고 있다. 기존의 많은 학습방법에서는 학습 데이터로부터 통계적 방법을 통해서 베이지안 네트워크 모델을 학습하는데, 이러한 접근 방법은 학습 데이터를 수집하기 어려운 문제에 적용하기 힘들며, 사용자의 의도를 데이터의 패턴들로만 학습하므로 직접적으로 사용자의 의도를 반영할 수 없다. 본 논문에서는 대화에 기반하여 사용자의 의도를 직접적으로 수집하고, 이로부터 베이지안 네트워크의 파라메터를 학습하는 방법을 연구한다. 제안하는 방법에서는 사용자와의 대화를 통해서 현재의 모델의 잘못된 점 혹은 개선점을 직접적으로 입력 받고, 이를 바탕으로 베이지안 네트워크 모델을 수정하여 데이터의 수집 없이 빠른 시간에 사용자가 원하는 모델을 학습 할 수 있다. 기존의 통계적 기법을 이용한 대표적인 베이지안 네트워크 파라메터 학습 방법인 최대우도 추정(Maximum Likelihood Estimation; MLE) 방법과 제안하는 방법을 비교하여 제안하는 방법의 유용성을 확인한다.
네트웍 모델러(Network Modeler)는 EMS 시스템에서 전력 네크워크 토폴로지(Network Topology)를 입력하기 위한 도구이다. 네트워크 모델러는 토폴로지 정보를 입력하여 모델을 생성하고 변경하는 일과 네트워크 다이어그램을 생성하는 일 등을 처리한다. 모델을 생성하기 위해 계통요소를 나타내는 심벌을 마우스로 움직여 화면에 배치하고 각 요소의 파라미터를 설정하며 작성된 전력계통 구성이 올바른지 검사하는 기능도 수행한다. 네트워크 모델러는 주로 EMS에서 사용되었고 SCADA 시스템에서는 사용되지 않았으나, 최근 개발되고 있는 SCADA 시스템은 네트워크 모델러를 함께 포함하여 시스템의 기능을 향상시키고 있다. 그러나 기존의 Network Modeler가 EMS 시스템 개발 벤더에 따라 다른 데이터 구조를 가지고 있어서 데이터의 상호 운용성이 떨어지고, 입력방법에 있어서도 자동화 및 자료 연계가 미흡하여 관리에 많은 시간이 소요되는 단점을 가지고 있다. 본 논문에서는 CIM 기반으로 정의된 데이터 모델을 사용자가 그래픽 다이어그램을 이용하여 쉽게 네트워크 토폴로지를 정의하도록 하고, 입력정보의 상호 운영성이 향상된 CIM 기반 Network Modeler를 설계한 내용을 설명하도록 한다.
무장데이터링크 시뮬레이션은 네트워크 기반 유도무기 모델링을 위하여 M&S 기술을 바탕으로 무장데이터링크의 운용성 및 정밀타격 성능을 검증하기 위한 시뮬레이션 소프트웨어다. 네트워크 기반 유도무기 모델은 원격임무통제를 위한 무장데이터링크망과 가상전장을 위한 시뮬레이션망이 연동하는 분산네트워크 환경에서 동작한다. 이때 유도탄모델 인터페이스는 다수의 프로토콜과 종속관계를 갖게 된다. 따라서 프로토콜이 수정될 때마다 유도탄모델 뿐만 아니라, 해당 인터페이스를 사용하는 다른 프로토콜도 수정되어야 한다. 또한 시뮬레이션 특성상 다양한 운용개념이 유도탄모델에 적용될 수 있다. 기존 고정표적 유도탄모델에 임무통제기능을 적용할 경우, 기존 모델이 훼손될 뿐만 아니라 기능 추가 및 삭제가 쉽지 않다는 문제가 있다. 본 논문은 서로 다른 프로토콜을 유도탄모델에 쉽게 적용하고 변경할 수 있는 프로토콜 변경용이성과 기 개발된 고정표적 유도탄모델을 변경하지 않고 무장데이터링크 운용 개념을 적용할 수 있는 유도탄모델 확장성을 위한 구조를 제안한다.
본 논문에서는 Edge computing 환경에서 다수의 노드들로 구성된 네트워크의 디바이스를 효율적으로 관리하기 위한 방법을 제안한다. 기존의 클라이언트-서버 모델은 모든 데이터와 그에 대한 요청을 중심 서버에서 처리하기 때문에, 다수의 노드로부터 생성된 많은 양의 데이터를 처리하는 데 빠른 응답속도를 보장하지 못한다. Edge computing은 분담을 통해 네트워크의 부담을 줄일 수 있는 IoT 네트워크에 적합한 방법으로, 데이터를 전송하고 받는 과정에서 네트워크의 대역폭을 사용하는 대신 서로 연결된 노드들이 협력해서 데이터를 처리하고, 또한 네트워크 말단에서의 데이터 처리가 허용되어 데이터 센터의 부담을 줄일 수 있다. 여러병렬 기계학습 모델 중 본 연구에서는 Stale Synchronous Parallel(SSP) 모델을 이용하여 Edge 노드에서 분산기계 학습에 적용하였다.
데이터 저장장치는 서버의 내부나 근처에 있는 것으로 인식되어 왔으나 네트워크 기술의 발달로 저장장치 시스템은 주 전산기와 원거리에 떨어져 존재할 수 있게 되었다. 인터넷 시대에 데이터 량의 폭발적인 증가는 데이터를 저장하는 시스템과 이를 전송하는 시스템의 균형 있는 발전을 요구하고 있으며 SAN(Storage Area Network)이나 NAS(Network Attached Storage)은 이러한 요구를 반영하고 있다. 저장장치로부터 최적의 성능을 도출하기 위해서 복잡한 저장 네트워크의 용량과 한계를 파악하는 것이 중요하다. 파악된 데이터는 성능 조율의 기초가 되고 저장장치의 구매 시점을 결정하는데 사용될 수도 있다. 본 논문에서는 저장 네트워크 시스템의 큐잉 네트워크를 통한 분석적 모델을 제시한 다음, 이의 시뮬레이션하여 분석적 모델이 정당하다는 것을 입증한다.
지리학적으로 고립된 지역에서 발생하는 산불과 같은 자연재해는 네트워크 설치의 어려움으로 외부에 빠르게 알려지기 어렵다. 본 연구에서는 infestation 모델을 응용하여 기존 네트워크에서 단절된 지역에서 발생할 수 있는 자연재해를 빠르고 효과적으로 전달할 수 있는 bio-ad hoc 모델을 설계하고자 한다. Infestation이란 기존 네트워크 infrastructure와 연결된 정보기지로서, 각 노드가 좁은 대신 빠른 대역폭을 가지는 infostation의 통신가능 반경에 인접했을 때 고속데이터 전송이 가능하게 설계한 통신 모델이다. 본 연구에서는 동물에게 이식된 센서로부터 데이터를 생성하고, 각 동물들에게 무선 태그를 설치하여 그 데이터를 효율적으로 목적지까지 전송수 있는 모델을 설계하기 위하여 infestation에 도달하기 전의 데이터가 각 노드사이에서 서로 공유될 수 있는 sparse ad-hoc infostation model을 제안하였다. 이 모델의 가능성을 알아보기 위해 동물의 최대 속도를 이용하여 동물의 이동성 및 체류시간을 결정한 후에 동물의 수 및 infostation의 수에 따른 도달시간을 시뮬레이션하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.