본 연구는 공급사슬의 네트워크 내재성의 관점에서 관계적 내재성을 중심으로 공급사슬과 성과와의 관계를 살펴보고자 한다. 이를 위해 관계적 내재성을 상호작용, 연계강도, 신뢰 그리고 상호의존성으로 제시하고 이들이 공급사슬의 기업관계 성과에 미치는 영향을 알아보았다. 이후 기업관계성과가 재무적 성과에 어떠한 영향을 미치는가를 살펴봄으로써 공급사슬 하에서 관계적 내재성과 성과와의 관계를 밝히는 것을 목적으로 한다. 가설검증결과 공급사슬의 관계적 내재성은 전반적으로 공급사슬의 성과에 영향을 미치는 것으로 나타났다. 공급사슬의 관계적 내재성 가운데에서도 특히 상호의존성과 신뢰, 그리고 연계강도가 높을수록 기업관계성과에 긍정적인 영향을 미치는 것으로 나타났는데, 이는 네트워크의 관계적 내재성이 높을수록 네트워크 내 구성원들 간의 관계성과가 높아진다는 기존의 연구와 일치함을 알아볼 수 있었다. 또한 공급사슬의 기업관계성과가 높으면 높을수록 공급사슬의 재무적 성과에 긍정적인 영향을 미치는 것으로 나타나 네트워크의 관계적 성과차원의 개선이 실제로 기업의 재무적 성과차원에도 크게 기여하는 것으로 나타났다.
"소셜 네트워크(Social Network)와 검색(Search)의 만남"은 현재 인터넷 상에서 매우 의미 있는 두 영역의 결합이다. 이와 같은 두 영역의 결합을 통해 소셜 네트워크 내에서 친구들의 생각이나 관심사 및 활동을 검색하고 공유함으로써 검색의 효율성과 적합성을 높이기 위한 연구들이 활발히 수행되고 있다. 본 논문에서는 일반적인 소셜 관계 랭크(SRR : Social Relation Rank) 및 토픽이 반영된 소셜 관계 랭크(TS_SRR : Topic Sensitive_Social Relation Rank) 알고리즘을 제안한다. SRR은 소셜 네트워크 내에 존재하는 웹 사용자들의 내재적인 특성 및 검색 성향 등에 대한 관련성(또는 유사정도)을 수치로 산정한 '소셜 관계 지수(SRV : Social Relation Value)'에 랭킹(Ranking)을 부여한 것을 의미한다. 제안하는 알고리즘의 검색 적용 가능성을 검증하기 위해 첫째, 웹 사용자간 직접 또는 간접적인 연결로 구성된 소셜네트워크를 구성 한다. 둘째, 웹 사용자들의 속성에 내재된 정보를 이용하여 토픽별 SRV를 산정한 후 랭킹을 부여하고, 토픽별 변화되는 랭킹에 따라 소셜 네트워크를 재구성 한다. 마지막으로 (TS_)SRR과 웹 사용자들의 검색 패턴(Search Pattern)을 비교 실험 한다. 실험 결과 (TS_)SRR이 높은 웹 사용자 간에는 검색 패턴 또한 유사함을 확인 하였다. 결론적으로 (TS_)SRR 알고리즘을 기반으로 관심분야에 연관성이 높은, 즉 상위에 랭크 된 웹 사용자들을 검색하여 검색 패턴을 공유 또는 상속받는 다면 개인화 검색(Personalized Search) 및 소셜 검색(Social Search)의 효율성과 신뢰성 향상에 기여 할 수 있다.
소셜 네트워크(Social Network)는 웹 환경에서 개인 중심의 네트워크로 구성되어 웹 사용자별 프로파일을 탐색하고 새로운 연결을 형성함으로써 정보의 소통을 지원한다. 따라서 유사한 내재적 정보를 가진 웹 사용자들로 구성 된 소셜 네트워크를 찾아서 검색에 적용한다면 검색의 효율성과 검색 결과에 대한 웹 사용자의 만족도를 향상 시킬 수 있다. 본 논문에서는 첫째, 웹 사용자간 직접 또는 간접적인 연결로 구성된 소셜 네트워크를 구성 한다. 둘째, 사용자들의 속성(Feature)에 내재된 정보를 이용하여 주제(topic)별 웹 사용자 간 유사성(Similarity)을 산정한 후, 주제(Topic)별 변화되는 유사성에 따라 소셜 네트워크를 재구성한다. 마지막으로 산정된 유사성과 웹 사용자들의 검색결과에 대한 만족도, 즉 검색 패턴(Search Pattern)을 비교 실험 한다. 실험 결과 주제별 유사성이 높은 웹 사용자 간에는 검색 패턴 또한 유사함을 확인 하였다. 이와 같은 사실을 검색에 적용한다면 개인화 검색(Personalized Search) 및 소셜 검색(Social Search)의 효율성 및 신뢰성 향상에 기여 할 수 있다.
산업이 발달함에 따라서 빅데이터가 무수히 생산되고 있으며 이에 따라서 데이터에 내재된 불확실성도 증가하고 있다. 본 논문에서는 데이터에 내재된 불확실성을 다루기 위해 interval type-2 퍼지 클러스터링 방법을 제안하고 이를 이용하여 퍼지뉴럴네트워크를 설계하고 최적화한다. 제안한 클러스터링 방법을 이용하여 퍼지 규칙을 설계하고 학습을 수행한다. 최적화하는 방법으로서 유전자 알고리즘을 이용하고 모델 파라미터들을 최적 탐색한다. 실험에서는 두 가지 패턴 분류를 시행하였으며 두 가지 실험 모두 우수한 패턴 인식 결과를 보여준다. 제안한 네트워크는 증가하는 불확실성을 다룰 수 있는 방법을 제공할 수 있을 것이다.
모호집합은 인간의 추론에 내재하는 모호성을 정형화한 것이다. 네트워크 신뢰도를 계산할 때, 각 링크의 확률이 모호수로 정의될 때의 신뢰도를 구하는 알고리즘을 설명하였다. 알고리즘은 분해법을 적용하는 것인데, 모호수의 연산을 포함한다. 분해법을 할 때 키스톤 부품을 시점으로 부터 하나씩 선택하여 분해한다. 이러한 방법은 키스톤 부품을 선택하는 기준이 필요 없으므로 간단하게 만든다. 분해에 의해서 두 개의 하위 문제가 생성되고 원 문제와 재귀관계를 수립할 수 있다. 재귀 알고리즘은 컴퓨터 프로그램을 간단하게 만든다.
최근 주목 받고 있는 소프트웨어 정의 네트워크(SDN: Software-Defined Networks)는 기존 네트워크 운용의 비효율성과 복잡성을 근본적으로 해결하기 위해 등장한 개방형 네트워크 인프라이다. SDN 시스템이 점차 상용화, 개방화 되는 시점에서, 내재되어있는 보안적 위협을 줄이기 위하여 효율적이고 자동화된 취약점 탐지의 필요성이 대두되고 있다. 본 논문에서는 자동화된 소프트웨어 테스트 기법 중 하나인 퍼즈테스팅이 SDN에 적용되어야 할 이유를 살펴보고자 한다. 또한, 기존에 관련된 연구의 분석을 통해 현재 학계의 연구동향을 파악하고 앞으로의 연구 방향성을 제시한다.
u-러닝(u-learning) 체제의 도입은, 다양한 형태의 원격교육을 지원하기 위한 교수-학습 시스템 및 모형을 요구하며, 이에 따라 유무선 인터넷을 이용한 u-러닝 시스템이 지속적으로 개발 적용되어 왔다. 하지만, 현재 운영되고 있는 대부분의 원격교육시스템은 교수자와 학습자간의 지속적인 쌍방향 상호작용 유지의 어려움, 시스템 구축을 위한 경제적 부담, 시스템 운영에 투입되는 교수자의 기술적 소양 부족 등의 문제점을 안고 있다. 이러한 문제점을 해결하기 위해서는 다음 항목에 대한 제고가 필요하다. 첫째, 효율적인 쌍방향 상호작용은 학습자 행동에 대한 지속적인 모니터링 및 피드백, 그리고 교수자의 상시 접속 상태 유지를 전제로 한다. 이는 사이버 교사(cyber tutor)를 이용하는 지능형 학습에 대한 논의로 이어진다. 둘째, 구현될 시스템은 경제성과 재사용성 측면이 고려되어야 하며, 이는 기존의 학교 현장의 인프라를 활용하는 u-러닝 개념의 학습 환경, 즉 이동성 네트워크 구조에 대한 설계가 요구된다. 셋째, 시스템의 직접적인 운영 주체인 일선 교사들의 기술적 소양을 고려할 때, 시스템 구축 및 사용상의 편리성, 학습 진행을 위한 보조적 지원 장치 등이 충분히 전제되어야 한다. 이에 본 연구에서는, 이동성과 내재성의 u-러닝 개념을 포함하고, 지능형 가상 교수자(cyber tutor)에 의한 블랜디드 학습(blended learning)을 도입하며, 사용자의 기술적, 경제적 부담의 제거가 가능한 지능형 u-러닝시스템을 개발하였다. 본 연구에 의해 개발된 시스템은 기존의 네트워크 인프라와 u-러닝의 개념을 통합하는 네트워크 구조, 원격학습을 지원하는 네트워크 화이트보드, 학습 과정의 저장과 해석을 지원하는 스크립트 인터프리터, 학습자 반응에 대한 피드백을 자동 제공할 수 있는 지능형 인터프리터로 구성되었다.
기존의 SOFPNN은 데이터 수가 적고 비선형 요소가 많은 시스템에 대한 체계적이고 효율적인 최적 모델 을 구축할 수 있었으며 각 층 노드의 선택 입력을 변화시킴으로써 네트워크 구조 전체의 적응능력을 향상 시켰다. SOFPNN의 구조는 퍼지 다항식 뉴론(FPN)들로 구성되어 있으며, 층이 진행하는 동안 모델 스스로 노드의 선택과 제거를 통해 최적의 네트워크 구조를 생성할 수 있는 유연성을 가지고 있다. 그러나, 노드의 입력변수의 수와 규칙 후반부 다항식 차수 그리고 입력변수는 설계자의 경험 또는 반복적인 학습을 통해 선호된 네트워크 구조를 선택하였으나, 최적의 네트워크 구조를 구축하는데는 어려옴이 내재되어 있었다. 본 논문에서는 자기구성 퍼지 다항식 뉴럴네트워크(Self-Organizing Fuzzy Polynomial Neural Networks: SOFPNN)을 최적화시키기 위해 유전자 알고리즘을 이용하여 자기구성 퍼지 다항식 뉴럴 네트워크의 입력변수의 수와 이에 해당되는 입력변수 그리고 규칙 후반부 다항식의 차수를 탐색하여 최적 의 자기구성 퍼지 다항식 뉴럴 네트워크를 구축한다. 따라서 모델 구축에 있어서 유연성과 정확성을 가지며 객관적이고 좀 더 정확한 예측 능력을 가진 SOFPNN 모델 구조를 구축할 수가 있다.
유비쿼터스(Ubiquitous)는 공간적 진화과정을 그 축으로 하여 물리공간, 전자공간, 그리고 궁극적으로 유비쿼터스 공간인 이른바 '제3공간'을 창출한다. 물리공간의 비효율성과 전자공간의 불안정성을 극복한 제3공간은 언제, 어디서나 도처에 존재하는 유비쿼터스 네트워크(broadband network + mobile network + wireless network)와 센서(sensor), 칩(chip) 등과 같이 아주 작은 컴퓨터가 내재되어 있는 사물들(things)의 연결과 통합으로 구성된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.