• Title/Summary/Keyword: 네트워크 기반

Search Result 13,415, Processing Time 0.042 seconds

A study on the effect of managers' innovation orientation, technological innovation capability and organizational capability on corporate innovation behavior (중소기업의 전략적지향성, 기술혁신역량, 조직역량이 기업성과에 미치는 영향에 관한 연구)

  • Kim, Sang-Hwa
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.399-407
    • /
    • 2022
  • Although Companies are forming cooperation and networks with various companies such as technology and R&D, but it is urgently necessary to secure multiple competencies of companies that can effectively adapt. This study investigated the effects of corporate strategic orientation, technological innovation capability, and organizational capability on corporate performance targeting SMEs located in the Daegu area. The survey was conducted from September 1 to November 30, 2021 for employees of Daegu companies, and a total of 183 cases were used for the final analysis. Looking at the results of the analysis, as a result of multiple regression analysis on Daegu companies, it was found that the strategic orientation, technological innovation capability, and organizational capability of managers, all independent variables, had a significant positive (+) effect on corporate performance. It can be seen that efforts should be made to improve education and R&D according to various competency bases and innovations because of the large impact on the manager's mind, the company's core technical competency, and the company's organizational performance. This study aimed to understand the importance of corporate strategic orientation, technological innovation capability, and organizational capability on corporate performance targeting relevant SMEs that can have a significant impact on national and regional economies.

A Data-driven Classifier for Motion Detection of Soldiers on the Battlefield using Recurrent Architectures and Hyperparameter Optimization (순환 아키텍쳐 및 하이퍼파라미터 최적화를 이용한 데이터 기반 군사 동작 판별 알고리즘)

  • Joonho Kim;Geonju Chae;Jaemin Park;Kyeong-Won Park
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.1
    • /
    • pp.107-119
    • /
    • 2023
  • The technology that recognizes a soldier's motion and movement status has recently attracted large attention as a combination of wearable technology and artificial intelligence, which is expected to upend the paradigm of troop management. The accuracy of state determination should be maintained at a high-end level to make sure of the expected vital functions both in a training situation; an evaluation and solution provision for each individual's motion, and in a combat situation; overall enhancement in managing troops. However, when input data is given as a timer series or sequence, existing feedforward networks would show overt limitations in maximizing classification performance. Since human behavior data (3-axis accelerations and 3-axis angular velocities) handled for military motion recognition requires the process of analyzing its time-dependent characteristics, this study proposes a high-performance data-driven classifier which utilizes the long-short term memory to identify the order dependence of acquired data, learning to classify eight representative military operations (Sitting, Standing, Walking, Running, Ascending, Descending, Low Crawl, and High Crawl). Since the accuracy is highly dependent on a network's learning conditions and variables, manual adjustment may neither be cost-effective nor guarantee optimal results during learning. Therefore, in this study, we optimized hyperparameters using Bayesian optimization for maximized generalization performance. As a result, the final architecture could reduce the error rate by 62.56% compared to the existing network with a similar number of learnable parameters, with the final accuracy of 98.39% for various military operations.

A Study on Estimating the Crossing Speed of Mobility Handicapped for the Activation of the Smart Crossing System (스마트횡단시스템 활성화를 위한 교통약자의 횡단속도 추정)

  • Hyung Kyu Kim;Sang Cheal Byun;Yeo Hwan Yoon;Jae Seok Kim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.6
    • /
    • pp.87-96
    • /
    • 2022
  • The traffic vulnerable, including elderly pedestrians, have a relatively low walking speed and slow cognitive response time due to reduced physical ability. Although a smart crossing system has been developed and operated to improve problem, it is difficult to operate a signal that reflects the appropriate walking speed for each pedestrian. In this study, a neural network model and a multiple regression model-based traversing speed estimation model were developed using image information collected in an area with a high percentage of traffic vulnerability. to support the provision of optimal walking signals according to real-time traffic weakness. actual traffic data collected from the urban traffic network of Paju-si, Gyeonggi-do were used. The performance of the model was evaluated through seven selected indicators, including correlation coefficient and mean absolute error. The multiple linear regression model had a correlation coefficient of 0.652 and 0.182; the neural network model had a correlation coefficient of 0.823 and 0.105. The neural network model showed higher predictive power.

Concept and Application of Groundwater's Platform Concurrency and Digital Twin (지하수의 플랫폼 동시성과 Digital Twin의 개념과 적용)

  • Doo Houng Choi;Byung-woo Kim;E Jae Kwon;Hwa-young Kim;Cheol Seo Ki
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.13-13
    • /
    • 2023
  • 디지털 기술은 오늘날 플랫폼과 디지털 트윈의 기술도입을 통해 현실 세계를 네트워크와 가상세계와의 연결이 통합되어진 가상 현실 세계의 입문 도약이다. 현실에서 가상현실의 사이의 디지털 전환(digital transformation)에는 디지털 기술과 솔루션을 비즈니스의 모든 영역에 통합하는 것이 포함된다. 이러한 디지털 전환의 핵심은 데이터에 관한 것이며, 데이터를 활용하여 가치를 창출하고 고객경험과 비즈니스 영역을 극대화하는 방식을 제공한다. 최적의 데이터를 제공하기 위한 플랫폼과 가상 현실세계 구현을 위한 디지털 트윈의 상호연계 관한 기본 개념은 데이터 수집, 데이터 분석, 데이터 시각화 및 데이터 보고와 같은 데이터 비즈니스이다. 현장 데이터는 디지털 양식을 통해 수집, 기록, 저장된다. 현장 IoT 기반 데이터(사진 및 비디오 매체 등)는 지속적으로 수집되고 종종 다른 데이터베이스에 저장되지만 지리 공간적 위치에 연결되지 않는다. 모든 디지털 발전을 조화시키고 지하수 데이터에서 더 빠른 이해를 도출하기 위해서는 디지털 트윈이 시작되어야 한다. 단일 지하수플랫폼에서 현장 조건을 시각화하고 실시간 데이터를 스트리밍하며, 과거 3D 데이터와 상호작용하여지질 또는 지화학 데이터를 선택적 사용을 위해 지하수 플랫폼과 디지털 트윈이 연계되어야 한다. 데이터를 디지털 정보모델과 연결하면 디지털 트윈에 생명을 불어넣을 수 있지만 디지털 트윈의 가치를 극대화하려면 여전히 데이터 플랫폼 서비스와 전달 방식을 선택해야 한다. 지하수 플랫폼동시성을 갖는 디지털 트윈은 정적 및 동적 데이터를 저장하는 데이터베이스 또는 크라우드 서비스에서 데이터를 가져오는 API(애플리케이션 프로그래밍 인터레이스), 디지털 트윈을 위한 호스팅 공간, 디지털 대상을 구축하는 소프트웨어, 구성 요소 간 읽기/쓰기를 위한 스크립트, chatGPT 및 API를 활용할 수 있다. 이를 통해 수집된 데이터의 실시간 양방향 통신기술인 지하수 플랫폼 기술을 활용하여 디지털 트윈을 적용하고 완성할 수 있고, 이를 지하수 분야에도 그대로 적용할 수 있다. 지하수 분야의 디지털 트윈 기술의 근간은 지하수 모니터링을 위한 관측장치와 이를 활용한 지하수 플랫폼의 구축 및 양방향 자료전송을 통한 분석 및 예측기술이다. 특히 낙동강과 같이 유역면적이 넓고 유역 내 지자체가 많아 이해관계가 다양하며, 가뭄과 홍수/태풍 등 기후위기에 따른 극한 기상이변가 자주 발생하고, 또한 보 및 하굿둑 개방 등 정부정책 이행에 따른 민원이 다수 발생하는 지역의 경우 하천과 유역에 대한 지하수 플랫폼과 디지털 트윈의 동시성 기술적용 시 지하수 데이터에 대한 고려가 반드시 수반되어야 한다.

  • PDF

A Study of User Behaviors Based on Data from the Beopmaru, Supreme Court Library of Korea (법원도서관 법마루 도서대출 데이터 기반 이용자 연구)

  • Jiyoung Kwak
    • Journal of the Korean Society for information Management
    • /
    • v.40 no.3
    • /
    • pp.143-162
    • /
    • 2023
  • This study analyzed the Beopmaru, Supreme Court Library of Korea, circulation data to identify user lending patterns and proposed a plan to reflect the analysis results in future user services. In 2022, Beopmaru's collection of books was 212,608, with law books accounting for 73%. However, general books accounted for 83% of actual circulation. Looking at the usage coefficient by topic, the literature field was the most actively used at 5.85, and the law field was the least used at 0.23. In the case of interlibrary loan, both KERIS member institutions and the Korean Bar Association had the highest loan ratios in the legal field, civil law field, and judicial litigation procedure field, in that order. However, member institutions affiliated with KERIS, a legal academic community, were lending law books on a wider range of subject areas than the Korean Bar Association, a practical organization. To improve access to legal information, the Beopmaru public service was implemented, but in reality, the use of reading space was high, and the proportion of general books loaned was much higher. In order to improve this, it seems necessary to strengthen the promotion of Beopmaru loan services, provide personalized services, improve book lending regulations, strengthen online services, and establish a cooperative network.

Design and Implementation of Economical Smart Wall Switch with IEEE 802.11b/g/n

  • Myeong-Chul Park;Hyoun-Chul Choi;Cha-Hun Park
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.8
    • /
    • pp.103-109
    • /
    • 2023
  • In this paper, we propose a smart wall switch based on IEEE 802.11b/g/n standard 2.4GHz band communication. As the 4th industrial era evolves, smart home solution development is actively underway, and application cases for smart wall switches are increasing. Most of the Chinese products that preoccupy the market through price competitiveness use Bluetooth and Zigbee communication switches. However, while ZigBee communication is low power, communication speed is slower than Bluetooth and network configuration through a separate hub is additionally required. The Bluetooth method has problems in that the communication range and speed are lower than Wi-Fi communication, the communication standby time is relatively long, and security is weak. In this study, an IEEE 802.11b/g/n smart wall switch applied with Wi-Fi communication technology was developed. In addition, through the two-wire structure, it is designed so that no additional cost is incurred through the construction of a separate neutral line in the building. The result of the study is more than 30% cheaper than the existing wall switch, so it is judged that it will be able to preoccupy the market not only in terms of technological competitiveness but also price competitiveness.

Analyzing Global Startup Trends Using Google Trends Keyword Big Data Analysis: 2017~2022 (Google Trends 의 키워드 빅데이터 분석을 활용한 글로벌 스타트업 트렌드 분석: 2017~2022 )

  • Jaeeog Kim;Byunghoon Jeon
    • Journal of Platform Technology
    • /
    • v.11 no.4
    • /
    • pp.19-34
    • /
    • 2023
  • In order to identify the trends and insights of 'startups' in the global era, we conducted an in-depth trend analysis of the global startup ecosystem using Google Trends, a big data analysis platform. For the validity of the analysis, we verified the correlation between the keywords 'startup' and 'global' through BIGKinds. We also conducted a network analysis based on the data extracted using Google Trends to determine the frequency of searches for the keyword or term 'startup'. The results showed a strong positive linear relationship between the keywords, indicating a statistically significant correlation (correlation coefficient: +0.8906). When exploring global startup trends using Google Trends, we found a terribly similar linear pattern of increasing and decreasing interest in each country over time, as shown in Figure 4. In particular, startup interest was low in the range of 35 to 76 from mid-2020 due to the COVID-19 pandemic, but there was a noticeable upward trend in startup interest after March 2022. In addition, we found that the interest in startups in each country except South Korea is very similar, and the related topics are startup company, technology, investment, funding, and keyword search terms such as best startup, tech, business, invest, health, and fintech are highly correlated.

  • PDF

Personalized Speech Classification Scheme for the Smart Speaker Accessibility Improvement of the Speech-Impaired people (언어장애인의 스마트스피커 접근성 향상을 위한 개인화된 음성 분류 기법)

  • SeungKwon Lee;U-Jin Choe;Gwangil Jeon
    • Smart Media Journal
    • /
    • v.11 no.11
    • /
    • pp.17-24
    • /
    • 2022
  • With the spread of smart speakers based on voice recognition technology and deep learning technology, not only non-disabled people, but also the blind or physically handicapped can easily control home appliances such as lights and TVs through voice by linking home network services. This has greatly improved the quality of life. However, in the case of speech-impaired people, it is impossible to use the useful services of the smart speaker because they have inaccurate pronunciation due to articulation or speech disorders. In this paper, we propose a personalized voice classification technique for the speech-impaired to use for some of the functions provided by the smart speaker. The goal of this paper is to increase the recognition rate and accuracy of sentences spoken by speech-impaired people even with a small amount of data and a short learning time so that the service provided by the smart speaker can be actually used. In this paper, data augmentation and one cycle learning rate optimization technique were applied while fine-tuning ResNet18 model. Through an experiment, after recording 10 times for each 30 smart speaker commands, and learning within 3 minutes, the speech classification recognition rate was about 95.2%.

Graph Convolutional - Network Architecture Search : Network architecture search Using Graph Convolution Neural Networks (그래프 합성곱-신경망 구조 탐색 : 그래프 합성곱 신경망을 이용한 신경망 구조 탐색)

  • Su-Youn Choi;Jong-Youel Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.649-654
    • /
    • 2023
  • This paper proposes the design of a neural network structure search model using graph convolutional neural networks. Deep learning has a problem of not being able to verify whether the designed model has a structure with optimized performance due to the nature of learning as a black box. The neural network structure search model is composed of a recurrent neural network that creates a model and a convolutional neural network that is the generated network. Conventional neural network structure search models use recurrent neural networks, but in this paper, we propose GC-NAS, which uses graph convolutional neural networks instead of recurrent neural networks to create convolutional neural network models. The proposed GC-NAS uses the Layer Extraction Block to explore depth, and the Hyper Parameter Prediction Block to explore spatial and temporal information (hyper parameters) based on depth information in parallel. Therefore, since the depth information is reflected, the search area is wider, and the purpose of the search area of the model is clear by conducting a parallel search with depth information, so it is judged to be superior in theoretical structure compared to GC-NAS. GC-NAS is expected to solve the problem of the high-dimensional time axis and the range of spatial search of recurrent neural networks in the existing neural network structure search model through the graph convolutional neural network block and graph generation algorithm. In addition, we hope that the GC-NAS proposed in this paper will serve as an opportunity for active research on the application of graph convolutional neural networks to neural network structure search.

Design and Forensic Analysis of a Zero Trust Model for Amazon S3 (Amazon S3 제로 트러스트 모델 설계 및 포렌식 분석)

  • Kyeong-Hyun Cho;Jae-Han Cho;Hyeon-Woo Lee;Jiyeon Kim
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.2
    • /
    • pp.295-303
    • /
    • 2023
  • As the cloud computing market grows, a variety of cloud services are now reliably delivered. Administrative agencies and public institutions of South Korea are transferring all their information systems to cloud systems. It is essential to develop security solutions in advance in order to safely operate cloud services, as protecting cloud services from misuse and malicious access by insiders and outsiders over the Internet is challenging. In this paper, we propose a zero trust model for cloud storage services that store sensitive data. We then verify the effectiveness of the proposed model by operating a cloud storage service. Memory, web, and network forensics are also performed to track access and usage of cloud users depending on the adoption of the zero trust model. As a cloud storage service, we use Amazon S3(Simple Storage Service) and deploy zero trust techniques such as access control lists and key management systems. In order to consider the different types of access to S3, furthermore, we generate service requests inside and outside AWS(Amazon Web Services) and then analyze the results of the zero trust techniques depending on the location of the service request.