• Title/Summary/Keyword: 냉열에너지

Search Result 69, Processing Time 0.029 seconds

전력의 효율적 운용 1. 코제너레이션 시스템

  • 대한전기협회
    • JOURNAL OF ELECTRICAL WORLD
    • /
    • s.263
    • /
    • pp.79-87
    • /
    • 1998
  • (1)코제너레이션이란 Co(공동의)와 Generation(발생)의 복합어로 이것을 시스템업한 것을 코제너레이션시스템(CGS)이라 한다. CGS는 전기와 열을 동시에 생산한다 해서 열전배합시스템이라고도 하며, 지금까지 대기에 방열하고 있던 엔진배열을 회수하여 발전에 이용함으로써 종합에너지효율을 75% 전후까지 높이는 시스템이다. 미쓰비시전기는 장기간에 걸친 전력계통기술, 발전$\cdot$냉열기술에 최신 일렉트로닉스기술을 결집하여 고신뢰성과 고효율을 실현하였다. (2)CGS에서 사용하는 엔진은 여러 조건에 따라 디젤엔진, 가스엔진, 가스터빈이 채택되는데 최근에는 배가스가 깨끗한 가스엔진, 가스터빈의 보급이 현저히 많아졌다. 또 CGS에서는 각종 NOx 저감기술이 개발되어 실용화되고 있어 디젤 엔진에서 300ppm, 가스엔진에서 150ppm, 가스터빈에서 100ppm정도까지 저감이 가능하다(어느 것이나 Nox 대책기는 0$\%$ $O_2$).(3)CGS의 도입 촉진을 위해 아래와 같은 전력회사와의 계통연계, 전기사업법 개정, 상용방재 겸용화 등 각종 규제완화가 실시되었다. -특고압수전에서 역조류가 있을 경우에 대비한 기술요건의 명확화 -1,000kW미만의 발전소는 공사계획 신고 불필요 -가스터빈발전소는 1,000kW미만, 내연력발전소는 모두 사용전검사가 원칙적으로 불필요 -도매공급사업에 관련된 참여허가의 철폐 -가스연료엔진도 상시방재 겸용화 가능

  • PDF

산업용 축냉시스템의 전력부하평준화 효과분석 기술

  • 양승권
    • JOURNAL OF ELECTRICAL WORLD
    • /
    • s.315
    • /
    • pp.44-47
    • /
    • 2003
  • 축열시스템(Thermal Storage System)이란 열에너지의 공급과 수요 사이에 있을 수 있는 시간적. 공간적 그리고 양적. 질적 부하 격차를 해소함으로써 에너지 이용효율을 향상시키는 시스템이다. 특히 축냉시스템은 심야전력을 이용해서 생산된 냉열을 저장하였다가 주간의 건물 냉방부하에 이용하는 시스템으로 계절간, 일간 전력부하 격차를 해소하는 중요한 매개체로 활용된다. 하지만 국내 축냉식 심야전력기기는 건물 냉방용으로만 적용대상이 한정되어 있어 보급에 한계가 있으며, 활용기간도 짧아 국가적으로도 자원 낭비적인 요소가 있다. 따라서 하절기 주간 전력부하의 평준화 효과를 확대하기 위해서는 활용기간이 길며, 적용범위가 광범위한 산업(상업 또 농수축산업 포함)용 냉장$\cdot$냉동 시스템에 축냉시스템 적용을 확대할 필요가 제기되고 있다. 이에 국내 산업용 축냉시스템 적용의 타당성 및 전력부하 평준화효과 분석기술 개발현황 및 방향을 소개하고자 한다.

  • PDF

Life Cycle Cost Analysis of Primary Cooling System by Systematic Support Cost (각종지원금제도에 의한 냉열원시스템의 라이프 사이클 코스트 분석)

  • Kim, C.M.;Jung, S.S.;Choi, C.H.
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.4
    • /
    • pp.97-106
    • /
    • 2002
  • The purpose of this study is to analyze the life cycle cost of primary cooling system by systematic support cost. Life Cycle Cost(LCC) is the process of making an economic assessment of an item, area, system, or facility by considering all significant costs of ownership over an economic life, expressed in terms of equivalent costs. The essence of life cycle costing is the analysis of equivalent costs of various alternative proposals. In order to select economical primary cooling system in early heat source plan stages, the research investigates cost items and cost characteristics during project process phases such as planning/design, construction, maintenance /management, and demolition/sell phases. The study also analyze the life cycle cost by capacity leading to suggest the most economical primary cooling system by systematic support cost.

Study on the improvement of BOG recondensation process at LNG receving terminal (LNG 기지에서 BOG 액화공정 개선에 관한 연구)

  • Baek Y. S.;Kim D. H.;Ha J. M.;Park Y.;Yoon I. K.
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.3 s.15
    • /
    • pp.23-28
    • /
    • 2001
  • BOG(Boil Off Gas) is formed about 0.05 vol$\%$/day from LNG tanks of LNG receiving terminal. To recycle the BOG using LNG cold energy, the quantities of LNG and BOG is mixed at the ratio of 11 : 1 by mass in the recondenser of mixing drum type. However, this process is inefficient in the view of energy. It is the most necessary for improvement BOG recondensing process to reduce LNG quantities supplying to recondense system. Therefore, this study has aimed to propose heat exchanger type and suggest results through the analysis of ASPEN PLUS simulator and feasibility study.

  • PDF

An Experimental and Numerical Analysis on Performance Comparison of a Trigeneration Desiccant System and Conventional Air-conditioning System (Trigeneration 제습공조시스템과 일반공조시스템의 성능 비교 실험 및 수치해석)

  • Kim, Hyoung-Tae;Chae, Jungmin;Cho, Young-Ah;Park, So-jin;Song, Geun-Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.3
    • /
    • pp.32-37
    • /
    • 2018
  • Recently, the distributed power generation market using natural gas is expected to expand gradually according to the government's future energy conversion policy. Distributed power generation means small power generation source near the power demand site, which has the advantage of reducing the construction costs of the transmission and distribution infrastructure, operating cost and power loss. A typical example of distributed generation using natural gas is the trigeneration system. In this study, we conducted a basic study on the performance analysis of trigeneration desiccant system for dehumidifying / cooling / heating in the air conditioner room by using the cold and engine waste heat energy generated in the trigeneration system. It shows that the system efficiency increases and the energy consumption decreases as the temperature difference between the inlet and outlet of the trigeneration system increases compared with the general air conditioning system.

Composition of the heat transportation system using metal hydride (수소저장합금을 이용한 열수송시스템 구성)

  • Sim, K.S.;Myoung, K.S.;Kim, J.W.;Han, S.D.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.10 no.1
    • /
    • pp.41-48
    • /
    • 1999
  • The heat transportation from a complex of industry to a rural area needs more efficient method because the distance between them is usually more than 10km. Conventional heat transportation using steam or hot water via pipe line has limits in transportation distance (about 3-5 km) because of the heat loss and frictional loss in the pipe line. Metal hydride can absorb or discharge hydrogen through exothermic and endothermic reaction. After releasing hydrogen from metal hydride with heatings by waste heat from industry we can transport this hydrogen to the rural area via pipe line. In the urban areas other metal hydride reacts with this hydrogen and produces heat for heating. Cool heat is also obtained if it is possible to use metal hydride with low reaction temperature. So metal hydride can be used as a media for transportation, storage of heat. Some problems of the heat transportation using metal hydrides, and the example of heat transportation system were discussed.

  • PDF

A Study on Cooling Characteristics of Clathrate Compound with Concentration of TMA (TMA 농도에 따른 포접화합물의 냉각특성에 대한 연구)

  • Kim Jin-Heung;Chung Nak-Kyu;Kim Chang-Oh
    • Journal of Energy Engineering
    • /
    • v.14 no.1
    • /
    • pp.18-23
    • /
    • 2005
  • This study is investigated the cooling characteristics of the TMA clathrate compound including TMA (Tri-methyl-amine, (CH₃)₃N) of 20~25 wt% as a low temperature storage material at -5℃ heat source. The results showed that as the concentration of TMA is increased, phase change temperature and specific heat are increased, but the supercooling and retention time of liquid phase are decreased. Especially, low temperature storage material containing TMA 25 wt% has the average of phase change temperature of 5.8℃, supercooling of 8.0℃, retention time of liquid phase for 10 minutes and specific heat of 4.099 kJ/kg℃ in the cooling process. From the results of this study, TMA clathrate compound showed higher phase change temperature than water md supercooling repression effect.

Design and Economic Analysis of Low Pressure Liquid Air Production Process using LNG cold energy (LNG 냉열을 활용한 저압 액화 공기 생산 공정 설계 및 경제성 평가)

  • Mun, Haneul;Jung, Geonho;Lee, Inkyu
    • Korean Chemical Engineering Research
    • /
    • v.59 no.3
    • /
    • pp.345-358
    • /
    • 2021
  • This study focuses on the development of the liquid air production process that uses LNG (liquefied natural gas) cold energy which usually wasted during the regasification stage. The liquid air can be transported to the LNG exporter, and it can be utilized as the cold source to replace certain amount of refrigerant for the natural gas liquefaction. Therefore, the condition of the liquid air has to satisfy the available pressure of LNG storage tank. To satisfy pressure constraint of the membrane type LNG tank, proposed process is designed to produce liquid air at 1.3bar. In proposed process, the air is precooled by heat exchange with LNG and subcooled by nitrogen refrigeration cycle. When the amount of transported liquid air is as large as the capacity of the LNG carrier, it could be economical in terms of the transportation cost. In addition, larger liquid air can give more cold energy that can be used in natural gas liquefaction plant. To analyze the effect of the liquid air production amount, under the same LNG supply condition, the proposed process is simulated under 3 different air flow rate: 0.50 kg/s, 0.75 kg/s, 1.00 kg/s, correspond to Case1, Case2, and Case3, respectively. Each case was analyzed thermodynamically and economically. It shows a tendency that the more liquid air production, the more energy demanded per same mass of product as Case3 is 0.18kWh higher than Base case. In consequence the production cost per 1 kg liquid air in Case3 was $0.0172 higher. However, as liquid air production increases, the transportation cost per 1 kg liquid air has reduced by $0.0395. In terms of overall cost, Case 3 confirmed that liquid air can be produced and transported with $0.0223 less per kilogram than Base case.

A Study on the Application of the Solar Energy Seasonal Storage System Using Sea water Heat Source in the Buildings (해수냉열원을 이용한 태양열계간축열시스템의 건물냉방 적용에 관한 연구)

  • Kim, Myung-Rae;Yoon, Jae-Ock
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.56-61
    • /
    • 2009
  • Paradigm depending only on fossil fuel for building heat source is rapidly changing. Accelerating the change, as it has been known, is obligation for reducing green house gas coming from use of fossil fuel, i.e. reaction to United Nations Framework Convention on Climate Change. In addition, factors such as high oil price, unstable supply, weapon of petroleum and oil peak, by replacing fossil fuel, contributes to advance of environmental friendly renewable energy which can be continuously reusable. Therefore, current new energy policies, beyond enhancing effectiveness of heat using equipments, are to make best efforts for national competitiveness. Our country supports 11 areas for new renewable energy including sun light, solar heat and wind power. Among those areas, ocean thermal energy specifies tidal power generation using tide of sea, wave and temperature differences, wave power generation and thermal power generation. But heat use of heat source from sea water itself has been excluded as non-utilized energy. In the future, sea water heat source which has not been used so far will be required to be specified as new renewable energy. This research is to survey local heating system in Europe using sea water, central solar heating plants, seasonal thermal energy store and to analyze large scale central solar heating plants in German. Seasonal thermal energy store necessarily need to be equipped with large scale thermal energy store. Currently operating central solar heating system is a effective method which significantly enhances sharing rate of solar heat in a way that stores excessive heat generating in summer and then replenish insufficient heat for winter. Construction cost for this system is primarily dependent on large scale seasonal heat store and this high priced heat store merely plays its role once per year. Since our country is faced with 3 directional sea, active research and development for using sea water heat as cooling and heating heat source is required for seashore villages and building units. This research suggests how to utilize new energy in a way that stores cooling heat of sea water into seasonal thermal energy store when temperature of sea water is its lowest temperature in February based on West Sea and then uses it as cooling heat source when cooling is necessary. Since this method utilizes seasonal thermal energy store from existing central solar heating plant for heating and cooling purpose respectively twice per year maximizing energy efficiency by achieving 2 seasonal thermal energy store, active research and development is necessarily required for the future.

  • PDF

Thermodynamic Analysis on Hybrid Molten Carbonate Fuel Cell - Turbo Expander System for Natural Gas Pressure Regulation (용융탄산염연료전지와 터보팽창기를 이용한 천연가스 정압기지의 열역학적 분석)

  • Sung, Taehong;Kim, Kyung Chun
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.2
    • /
    • pp.28-34
    • /
    • 2014
  • In the natural gas pressure regulation station, high pressure natural gas is decompressing using pressure regulation valves. Waste pressure occurred in the pressure regulation process can be recovered through adopting turbo expanders. However, in the waste pressure recovery process, Joule Thompson effect causes below $0^{\circ}C$ and this low temperature freezes outside land of pipeline or generates methane hydrate in the pipeline which can block the pipeline. Therefore, turbo expander systems are accompanying with a boiler for preheating natural gas. Molten carbonate fuel cell (MCFC), one of the high temperature fuel cell, can use natural gas as a direct fuel and is also exhausting low emission gas and generating electricity. In this paper, a thermodynamic analysis on the hybrid MCFC-turbo expander system is conducted. The fuel cell system is analyzed for the base load of the hybrid system.