• Title/Summary/Keyword: 냉방기

Search Result 289, Processing Time 0.027 seconds

A Study on the Superheat Control of a Tandem-type Airconditioner by Using a Variable Speed Outdoor Fan (변속실외기펜을 사용한 텐텀형냉방기의 과열도제어에 관한 연구)

  • Kim, Jae-Hyun;Han, Do-Young
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.474-479
    • /
    • 2005
  • For the safe operation of an air conditioner, the liquid car η 'over to compressors should be minimized and compressors should be operated in the specified region of suction and discharge pressures recommended by compressor manufactures. In this study, a capillary assisted tandem-type airconditioner was considered. A variable speed outdoor fan was used to control operating points of the system. Test results showed the possibilities to move system operating points to the safe region by controlling the speed of an outdoor fan.

  • PDF

Cooling Performance Characteristics of High-Performance Heat Pump with VI Cycle Using Re-Cooler (재냉기를 이용한 고성능 VI(Vapor Injection)사이클 열펌프의 냉방 성능특성에 관한 연구)

  • Lee, Jin-Kook;Choi, Kwang-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.6
    • /
    • pp.592-598
    • /
    • 2015
  • In this study, we experimentally investigate the performance characteristics of a high-performance summer-cooling heat pump for an R410A by applying an air-cooled-type vapor-injection (VI) cycle. The devices used for the experiment consist of a VI compressor, condenser, oil separator, plate-type heat-exchanger, economizer, evaporator, and re-cooler. The experimental conditions employed for the cooling performance were divided into three cycles. First, in Cycle A, we apply a VI cycle and with no heat exchange between the evaporator outlet refrigerant and the VI cycle suction refrigerant in the re-cooler. For Cycle B, there is heat exchange, and for Cycle C, there is neither a VI cycle nor heat exchange between the evaporator outlet refrigerant and the VI cycle suction refrigerant. From the analysis results, we observe that the performance was highest in the VI cycle with heat exchange between the evaporator outlet refrigerant and the VI cycle suction refrigerant (Cycle B), while it was lowest in Cycle C without application of the VI cycle. Moreover, the cooling coefficient of Performance ($COP_C$) averaged 3.5 in Cycle B, which was 8.6% higher than the corresponding value in Cycle A, and 33% higher than that in Cycle C.

Study on Improvement of Air Conditioning Units for Anti Aircraft Gun Wheeled Vehicle (차륜형 대공포 냉방장치 성능개선 연구)

  • Jeon, Ki-Hyun;Lee, Dong-Hui;Lee, Boo-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.12
    • /
    • pp.1099-1103
    • /
    • 2013
  • A combat vehicle needs to have an air-conditioning unit. Accordingly, new combat systems have tended to apply an integrated heating, cooling, and ventilating system. The air conditioning unit used depends on the combat vehicle's purpose of use. In this study, we studied an air-conditioning unit for an armored combat vehicle as a special use and military specification and tried to improve the air-conditioning unit's performance.

소형 가스 흡수식 개발

  • Jung, Bong-Chul;Nam, Im-Woo;Ryu, Hyuk;Kim, Han-Young;Lee, Jung-Doo
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.33 no.3
    • /
    • pp.19-23
    • /
    • 2004
  • 소형가스 흡수식 냉온수 유닛의 개발 이력에 관해 소개하고자 한다. 국내의 소위 가정용 에어컨의 보급률은 40%를 넘어서고 있으며, 생활의 향상에 따라 그 보급률은 급성장하는 양상을 보이고 있다. 이러한 전기를 사용하는 가정용 냉방기의 급성장은 여름철 전력 예비율을 크게 위협하고 사계절의 구분이 확실한 한국의 경우 계절별 수급의 불균형을 보여준다. 2002년도 냉방 전력사용량(8,910㎿)은 총 전력 생산(45,770㎿)의 약 20%를 사용하기에 이르렀다. 이러한 추세로 이어질 경우 2010년 국내 냉방 총 전력은 15,250㎿로 2000년 기준전력의 약 2배에 이른다. 반면, 2002년도 가스 냉방의 사용은 LNG 총수요량의 1.2%(220천톤)에 지나지 않았다. LNG의 사용은 청정에너지로서의 겨울철 난방용 사용이 급증한 것에 비해 여름철 사용량은 없어 LNG 인수기지의 대규모 저장 탱크가 가득 차있는 양상을 보여준다.(중략)

  • PDF

The Program Coding Technology for the heat Load Prediction in Switching Room (통신시스템실 열부하 예측프로그래밍 기술)

  • Noh, H.K.
    • Electronics and Telecommunications Trends
    • /
    • v.14 no.5 s.59
    • /
    • pp.111-114
    • /
    • 1999
  • 전화국사 내 교환기의 신설이나 증설 시에 최적의 열부하 산정이 필요하다. 이를 위해 전화국사의 특성에 알맞은 열부하 계산 프로그램을 윈도우용으로 개발하여 비전문가들도 쉽게 사용할 수 있도록 하고자 한다. 프로그램 구성은 기본자료입력부, 전화국사의 자료입력부, 입력된 데이터를 이용하여 국사의 냉방부하와 냉방시스템의 용량을 계산하는 부분 그리고 출력부분으로 크게 4부분으로 나눌 수 있다. 본 프로그램을 이용하여 한국통신 중앙전화국 5ESS실의 냉방기기용량을 산정해 본 결과, 기존 냉방기기 69USRT의 49%에 해당되는 33.5USRT로 나타나 기존 냉방기기의 용량이 너무 과다하게 선정되었음이 판명되었다. 본 프로그램은 전화국사의 에너지 절약에 기여할 수 있을 것으로 판단된다.

An Experimental Study on Radiation/Convection Hybrid Air-Conditioner (복사-대류 겸용 하이브리드 냉방기에 대한 실험 연구)

  • Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.288-296
    • /
    • 2019
  • Radiation cooling has used ceilings or floors as cooling surfaces. In such cases, to avoid moisture condensation on the surface, the surface temperature needs be higher than the dew point temperature or an additional dehumidifier is added. In this study, with a goal for residential application, intentional moisture condensation on the cooling surface was attempted, which increased the cooling capacity and improved the indoor comfortness. This method included two separate refrigeration cycles - convection-type dehumidifying cycle and the panel cooling cycle. Test results on the panel cooling cycle showed that, at the standard outdoor ($35^{\circ}C/24^{\circ}C$) and indoor ($27^{\circ}C/19.5^{\circ}C$) condition, the refrigerant flow rate was 8.8 kg/h, condensation temperature was $51^{\circ}C$, evaporation temperature was $8.8^{\circ}C$, cooling capacity was 376 W and COP was 1.75. Furthermore, the panel temperature was uniform within $1^{\circ}C$ (between $13^{\circ}C$ and $14^{\circ}C$). As the relative humidity decreased, the cooling capacity decreased. However, the power consumption remained approximately constant. In the convection-type dehumidification cycle, the refrigerant flow rate was 21.1 kg/h, condensation temperature was $61^{\circ}C$, evaporation temperature was $5.0^{\circ}C$, cooling capacity was 949 W and COP was 2.11 at the standard air condition. When both the radiation panel cooling and the dehumidification cycle operated simultaneously, the cooling capacity of the radiation panel cycle was 333 W and that of the dehumidification cycle was 894 W, and the COP was 1.89. As the fan flow rate decreased, both the cooling capacity of the radiation panel and the dehumidification cycle decreased, with that of the dehumidification cycle decreasing at a higher rate. Finally, a possible control logic depending on the change of the cooling load was proposed based on the results of the present study.

Characteristic Analysis of Hybrid Desiccant Cooling System for District Heating in Residential Environment (지역난방에 연계된 하이브리드 제습냉방시스템의 주거환경에서의 성능 분석)

  • Ahn, Joon;Kim, Jaeyool;Kang, Byung Ha
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.7
    • /
    • pp.571-579
    • /
    • 2014
  • A series of field tests on hybrid desiccant cooling systems were conducted in July-August, 2013. The temperature and humidity of the supply and return air, power, and heat consumption were monitored and transferred in real time through the Internet. The performance parameters of the cooling system, namely, cooling capacity and COP (coefficient of performance), were evaluated from the measured data and their variations under outdoor conditions was analyzed. It was found that with increase in the outdoor temperature, the total energy decreases and cooling capacity increases whereas the latter decreases with increase in the outdoor humidity. The COP was also found to increase with the increase in outdoor temperature.

The Effect of Root Zone Cooling at Night on Substrate Temperature and Physiological Response of Paprika in Hot Climate (고온기 야간시간 근권냉방이 파프리카 배지온도와 생리적 반응에 미치는 영향)

  • Choi, Ki Young;Ko, Ji Yeon;Choi, Eun Young;Rhee, Han Cheol;Lee, Sung Eun;Lee, Yong-Beom
    • Journal of Bio-Environment Control
    • /
    • v.22 no.4
    • /
    • pp.349-354
    • /
    • 2013
  • This study examined a technique for cooling root zone aimed at lowering substrate temperature for sweet pepper (Capsicum annum L. 'Orange glory') cultivation in coir substrate hydroponics during hot season, from the $16^{th}$ of July to $15^{th}$ of October in 2012. The root zone cooling technique was applied by using an air duct (${\varnothing}12$ cm, hole size 0.1 mm) to blow cool air between two slabs during night (5p.m. to 3a.m.). Between the $23^{rd}$ of July and $31^{st}$ of August (hot temperature period), average daily substrate temperature was $24.7^{\circ}C$ under the root zone cooling, whereas it was $28.2^{\circ}C$ under condition of no cooling (control). In sunny day (600~700 W $m^{-2}{\cdot}s^{-1}$), average substrate temperatures during the day (6a.m. to 8p.m.) and night (8p.m. to 6a.m.) were lower about $1.7^{\circ}C$ and $3.3^{\circ}C$, respectively, under the cooling treatment, compared to that of control. The degree of temperature reduction in the substrate was averagely $0.5^{\circ}C$ per hour under the cooling treatment during 6p.m. to 8p.m.; however, there was no decrease in the temperature under the control. The temperature difference between the cooling and control treatments was $1.3^{\circ}C$ and $0.6^{\circ}C$ in the upper and lower part of the slab, respectively. During the hot temperature period, about 32.5% reduction in the substrate temperature was observed under the cooling treatment, compared to the control. Photosynthesis, transpiration rate, and leaf water potential of plants grown under the cooling treatment were significantly higher than those under the control. The first flowering date in the cooling was faster about 4 days than in the control. Also, the number of fruits was significantly higher than that in the control. No differences in plant height, stem thickness, number of internode, and leaf width were found between the plants grown under the cooling and control, except for the leaf length with a shorter length under the cooling treatment. However, root zone cooling influenced negligibly on eliminating delay in fruiting caused by excessively higher air temperature (> $28^{\circ}C$), although the substrate temperature was reduced by $3^{\circ}C$ to $5.6^{\circ}C$. These results suggest that the technique of lowering substrate temperature by using air-duct blow needs to be incorporated into the lowering growing temperature system for growth and fruit set of health paprika.