• Title/Summary/Keyword: 냉매22

Search Result 235, Processing Time 0.023 seconds

A study on design for free cooling system using dry cooler (드라이쿨러를 적용한 외기냉수냉방 시스템 설계에 관한 연구)

  • Yoon, Jung-In;Baek, Seung-Moon;Heo, Jeong-Ho;Kim, Young-Min;Son, Chang-Hyo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.9
    • /
    • pp.1027-1031
    • /
    • 2014
  • Free cooling system is used to reduce energy consumption of cooling system. Free cooling system is consisted of cooling group and dry-cooler in which heat exchange of chilled water and out air is conducted. Although this system has an excellent energy saving effect in place having cooling load regularly, data or material of design for free cooling system is lacked. In this study, characteristics analysis of free cooling system is conducted through software HYSYS with changing some facts. The main result is following as : Dry-cooler capacity is influenced by out air temperature, required chilled water temperature and LMTD(Logarithmic Mean Temperature Difference) of heat exchanger. As out air temperature is more low, dry-cooler capacity become increased. in addition, as required chilled water temperature is more high and LMTD is more low, the out air temperature range is widened for using dry-cooler. If out air temperature is below $0^{\circ}C$, antifreeze need to be used because freeze and burst can be occurred. In case of South Korea, antifreeze of 34% of ethylene glycol concentration is proper. When compressor load of R22, R134a and R407C is compared, considering environmental regulation and energy consumption, R134a is best working fluid.

Field Cooling Tests of Paddy Stored in Steel Bins with a Grain Cooler (곡물냉각기를 이용한 철제 원형빈에서 벼 냉각)

  • 김의웅;김동철
    • Food Science and Preservation
    • /
    • v.11 no.2
    • /
    • pp.263-268
    • /
    • 2004
  • Two field cooling tests were conducted to evaluate the cooling characteristic of paddy with a prototype grain cooler. The first test was carried out during summer season in a steel bin with 180.3ton of paddy at Sunchon. And the second test was carried out during harvesting season in a steel bin with 272.2ton of paddy at Ulsan. At the first test, initial paddy temperature of 23.6$^{\circ}C$ was dropped to 14$^{\circ}C$, and initial moisture content of 19.9% was dropped to 19.3% after 52.5 hours of cooling. At the second test, initial paddy temperature of 16.1$^{\circ}C$ dropped to 5.5$^{\circ}C$ after 78.0 hours of cooling. And, at the first test, the average air flow rates of chilled air leaving the grain cooler and penetrating the grain layer were 77.5 ㎥/min and 42.5 ㎥/min, respectively. To prevent leakage of chilled air from plenum chamber of steel bin, which was about 45% of the average air flow rates of chilled air leaving the grain cooler, a proper method was required. The average total power consumption at the first test during summer was 22.1 ㎾ with control of fan damper. At the second test, it was 17.4 ㎾ due to controlling the capacity of compressor with unloading solenoid valve and changing the flow rates of hot refrigerant gas flowing into evaporator and reheater from compressor, resulting in 27% reduction of energy consumption.

Development of a New Commercial Grain Cooler (곡물냉각기의 개발)

  • 김동철;김의웅;금동혁;한종규
    • Food Science and Preservation
    • /
    • v.11 no.2
    • /
    • pp.250-256
    • /
    • 2004
  • The objectives of this study were to develop a new commercial grain cooler suited to domestic weather and post-harvesting conditions for paddy, and to evaluate the performance. A prototype grain cooler capable of cooling paddy of 200 tons within 24 hours was developed. The grain cooler was designed to control the refrigeration capacity from 0 to 100% by controlling the capacity of compressor with unloading solenoid valve and by changing the flow rates of hot refrigerant gas flowing into reheater and evaporator from compressor. And a controller with one chip microprocessor was developed to control temperature and relative humidity of cooling air. The maximum cooling capacity of the grain cooler was 35,284㎉/hr at condensing/evaporating pressure of 16.5/3.6 kgf/$\textrm{cm}^2$. Maximum flow rate of cooling air was 120 ㎥/min at static pressure of 279 mmAq. The total maximum required power was 22.8㎾, and total required energy was saved from 26.7 to 33.3% of maximum power depending on operating conditions. The coefficient of performance of refrigeration devices and total coefficient of performance of the grain cooler were 4.71 and 1.8, respectively.

Capacity Modulation of a Ground Source Multi-Heat Pump in the Part Load Condtions (축열형 지열원 냉난방 시스템의 단기 성능 특성 연구)

  • Kim, Namtae;Cho, Chanyong;Choi, Jong Min
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.119-119
    • /
    • 2010
  • 무한 지속 가능한 지열 에너지를 활용한 공조시스템인 지열원 냉난방 시스템은 기존의 공조 시스템보다 열원이 안정적이기 때문에 높은 효율과 우수한 성능을 가지므로, 기후변화협약 대응의 주요수단으로서 기술개발과 보급이 증대되고 있다. 본 연구에서는 대수층 축열 지열원 열펌프 시스템에 대한 실증 연구를 통하여 대수층 축열 지열원 열펌프 시스템의 하절기 냉방 성능을 분석하였다. 대수층 축열 냉난방 시스템은 주입정과 양수정의 2개의 우물공이 설치되어 있으며, 겨울 난방 운전 중에 한 개의 우물공으로부터 지하수를 열펌프로 유입한 후 낮은 온도의 지하수를 타 우물공에 축열하고, 하절기에 겨울에 저온으로 축열된 우물공으로부터 지하수를 열펌프로 유입하여 온도가 증가된 지하수를 타 우물공에 주입한다. 즉, 계절별로 열펌프에서 생성된 냉수와 온수의 대수층 축열을 위하여 계절별로 주입정과 양수정이 바뀌게 된다. 본 연구의 대수층 축열 지열원 열펌프 시스템의 2009년 8월의 주요일자별 시스템 운전 중의 평균 냉방 열펌프 유닛 COP와 냉방 시스템 COP는 각각 4.7과 3.4이상의 우수한 성능을 나타냈다. 또한, 모든 일자에 대하여 외기온도가 $31.6^{\circ}C$$22^{\circ}C$까지 변화가 크게 나타났지만 열펌프 유닛 COP와 시스템 COP의 변화는 미소하였다. 이는 양수정으로부터의 지중 순환수가 운전기간 중에 $17.5^{\circ}C$로 일정하게 유지되었기 때문이다. 양수정과 주입정 사이에 5개의 관측공을 설치하였으며, 양수정 측에 인접한 관측공의 온도는 거의 변화가 없었으며, 단기간이지만 널리 사용되고 있는 수직밀폐형 시스템과 달리 지속적인 냉방운전 중의 양수 온도의 증가는 발생하지 않아 안정적인 성능을 나타냈다. 주입정에 인접한 모니터링 홀의 온도는 심도가 깊은 곳의 온도가 낮은 곳보다 높게 나타났다. 이는 냉방 운전 시 열펌프 유닛의 실외열교환기에서 지중 순환수가 냉매로부터 열을 취득하여 온도가 상승하면서 주입정측에 온열이 축열이 진행되었기 때문으로 분석되며, 하절기의 냉방 운전 시간이 증가할 경우 축열 효과는 더욱 증가할 것으로 예상된다. 양수정과 주입정 중간의 모니터링 홀의 온도는 2009년 8월 가동 중에 온도변화는 없었는데, 이는 양수정과 주입정 사이의 열간섭이 발생하지 않았기 때문으로 분석된다. 일자별로 운전 중의 열펌프 유닛 COP는 차이가 없었지만, 운전 및 정지 시간을 모두 포함한 시스템 소비전력과 냉방용량을 모두 합산하여 산정한 일일 평균 냉방 열펌프 유닛 COP와 냉방 시스템 COP는 일자별로 다소 차이가 발생하였는데, 이는 각 일자별로 열펌프 유닛 가동율의 차이로 인하여 열펌프 유닛 가동 전에 먼저 작동되는 지중순환펌프의 운전 소비전력의 차이와 열펌프의 단속운전 시의 열손실과 추거 소비전력의 차이 때문이다.

  • PDF

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2009 (설비공학 분야의 최근 연구 동향 : 2009년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Lee, Dae-Young;Kim, Seo Young;Choi, Jong-Min;Baik, Yong-Kyu;Kwon, Young-Chul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.7
    • /
    • pp.492-507
    • /
    • 2010
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2009. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) Research trends of thermal and fluid engineering have been surveyed as groups of general thermal and fluid flow, fluid machinery and piping, and new and renewable energy. Various topics were covered in the field of general thermal and fluid flow such as an expander, a capillary tube, the flow of micro-channel water blocks, the friction and anti-wear characteristics of nano oils with mixtures of refrigerant oils, etc. Research issues mainly focused on the design of micro-pumps and fans, the heat resistance reliability of axial smoke exhaust fans, and hood systems in the field of fluid machinery and piping. Studies on ground water sources were executed concerning two well type geothermal heat pumps and multi-heat pumps in the field of new and renewable energy. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics and industrial heat exchangers. Researches on heat transfer characteristics included the heat transfer in thermoelectric cooling systems, refrigerants, evaporators, dryers, desiccant rotors. In the area of industrial heat exchangers, researches on high temperature ceramic heat exchangers, plate heat exchangers, frosting on fins of heat exchangers were performed. (3) In the field of refrigeration, papers were presented on alternative refrigerants, system improvements, and the utilization of various energy sources. Refrigeration systems with alternative refrigerants such as hydrocarbons, mixed refrigerants, and $CO_2$ were studied. Efforts to improve the performance of refrigeration systems were made applying various ideas of suction line heat exchangers, subcooling bypass lines and gas injection systems. Studies on heat pump systems using unutilized energy sources such as river water, underground water, and waste heat were also reported. (4) Research trend in the field of mechanical building facilities has been found to be mainly focused on field applications rather than performance improvements. In the area of cogeneration systems, papers on energy and economic analysis, LCC analysis and cost estimating were reported. Studies on ventilation and heat recovery systems introduced the effect on fire and smoke control, and energy reduction. Papers on district cooling and heating systems dealt with design capacity evaluation, application plan and field application. Also, the maintenance and management of building service equipments were presented for HVAC systems. (5) In the field of architectural environment, various studies were carried to improve indoor air quality and to analyze the heat load characteristics of buildings by energy simulation. These studies helped to understand the physics related to building load characteristics and to improve the quality of architectural environment where human beings reside in.