• 제목/요약/키워드: 냉매123

검색결과 32건 처리시간 0.026초

수평관에서 R245fa의 응축 열전달계수 (Condensation Heat Transfer Coefficients of R245fa on a Plain Tube)

  • 심윤보;박기정;정동수;김종성
    • 설비공학논문집
    • /
    • 제19권8호
    • /
    • pp.555-562
    • /
    • 2007
  • In this study, condensation heat transfer coefficients (HTCs) of R22, R134a, R245fa and R123 are measured on a horizontal plain tube. All data are taken at the vapor temperature of $39^{\circ}C$ with a wall subcooling temperature $3-8^{\circ}C$. Test results show the HTCs of newly developed alternative low vapor pressure refrigerant, R245fa, on a plain tube are 9.5% higher than those of R123 while they are 3.3% and 5.6% lower than those of R134a and R22 respectively. Nusselt's prediction equation for a plain tube underpredicts the data by 13.7% for all refrigerants while a modified equation yielded 5.9% deviation against all data. From the view point of environmental safety and condensation heat transfer, R245fa is a long term good candidate to replace R123 used in centrifugal chillers.

터보냉동기용 만액식 증발기에 사용되는 성형가공관의 풀비등 성능 (Pool boiling performance of an enhanced tube used in flooded refrigerant evaporator for turbo-refrigerator)

  • 김태형;김내현
    • 설비공학논문집
    • /
    • 제11권6호
    • /
    • pp.808-814
    • /
    • 1999
  • Pool boiling performance of a metal-formed enhanced tube for a flooded refrigerant evaporator was experimentally investigated. Tests were performed for three different refrigerants(R-11, R-123, R-l34a), at two different saturation temperatures $4.4^{\circ}C \;and \;26.7^{\circ}C$ .Heat flux was varied from 10㎾/$m^2\;to\ 50㎾/$m^2$. Compared with the heat transfer coefficients of the smooth tube, the heat transfer coefficients of the enhanced tube were 6.6 times higher for R-11, 6.0 tines higher for R-123 and 3.5 times higher for R-l34a. The enhancements are comparable with those of foreign products. The heat transfer coefficients of R-l34a were higher than those of R-11 and R-123, either for the enhanced tube or for the smooth tube. At $4.4^{\circ}Csaturation temperature, however, the heat transfer coefficients of R-l34a were approximately the same as those of R-11, The effect of the saturation pressure on the boiling performance was similar to that of the smooth tube - the heat transfer coefficient increases as the saturation pressure increases.

  • PDF

순수냉매의 풀비등 열전달 상관식 (Pool Boiling Heat Transfer Correlation for Pure Refrigerants)

  • 고영환;김종곤;송길홍;정동수;김영일
    • 설비공학논문집
    • /
    • 제12권10호
    • /
    • pp.941-949
    • /
    • 2000
  • Pool boiling heat transfer coefficients (HTCs) of HCFC123, CFC11, HCFC142b, HFC134a, CFC12, HFC22, HFC125 and HFC32 on a horizontal smooth tube have been measured. The experimental apparatus is specially designed to simulate the real heat transfer tube with the use of the secondary fluid of water as a heat source rather than a conventional electric heat source. Data were taken in the order of decreasing heat flux starting at $80 ㎾/m^2\; and \;ending\; at\; 5㎾/m^2\;in\; the\; poo\;l temperature\; at\; 7^{\circ}C$, Test results showed that HTCs of HFC125, and HFC32 are 50~67% higher than those of HCFC22. It is also found that some of the popular pool boiling heat transfer correlations in the literature are not good to predict the HTCs of newly developed alternative refrigerants. A new correlation was developed by a regression analysis which is based upon the consistent data obtained in this study and it showed an excellent agreement with all experimental data having an absolute mean deviation of less than 10%.

  • PDF

이산화탄소를 가압원으로 하는 할론대체 소화기용 청정소화약제에 대한 연구 (A Study on Clean Agents for Halon Replacement in the Portable Extinguisher with CO2 as an Expellant Gas)

  • 정기신
    • 한국화재소방학회논문지
    • /
    • 제33권3호
    • /
    • pp.51-55
    • /
    • 2019
  • CFC의 오존층 파괴로 인해 이를 대체할 냉매, 세정제, 발포제의 개발과 더불어 소방분야에서는 할론대체소화약제개발에 주력하여 왔다. 특히 소화기분야에서는 할론1211 소화기를 대체할 청정소화약제를 개발하여 왔다. 그 결과로 개발된 소화기용 청정소화약제 중 가장 널리 사용되는 소화약제가 HCFC-123이다. 대부분의 청정소화약제들은 자체 증기압이 약하기 때문에 어떠한 가압원을 사용할 것인가가 중요한 문제 중 하나이다. 본 연구에서는 소화기용 소화약제들 중 HCFC-123, HCFC-124, HFC-125, Novec-1230을 선정하여 이들 약제에 대한 가압원으로 보조소화효과를 기대할 수 있는 CO2를 사용하였다. 각 소화약제별로 약제량과 CO2량을 조절하며 시험을 실시한 결과 HCFC-123 소화약제로부터 기대한 소화효과를 확인할 수 있었다. 현재 시중에 판매되고 있는 소화기인 HCFC-123 2.5 kg을 질소로 가압하여 소화능력 ABC 각 1단위인 소화기보다 소화약제가 적은 HCFC-123 1.5 kg과 CO2 1.5 kg을 혼합한 소화기로 동일한 소화능력시험에 성공하였다. 이러한 소화시험의 결과는 가압원인 CO2의 보조소화효과를 확인한 것이라 할 수 있다. 이는 중간대체물질로 분류되어 있는 HCFC계열의 소화약제를 줄일 수 있어 기존의 소화기보다 친환경적이고 경제적이라 할 수 있으며 B,C급 화재용 소화기인 CO2 소화기로 A급 가연물이 많은 전기, 전자 관련 시설을 방호하는 불합리함을 해결하는데 기여할 수 있으리라 기대한다.

낮은 핀관과 Turbo-C 촉진관에서 R245fa의 외부 응축 열전달계수 (External Condensation Heat Transfer Coefficients of R245fa on Low Fin and Turbo-C Tubes)

  • 심윤보;박기정;정동수
    • 설비공학논문집
    • /
    • 제21권3호
    • /
    • pp.167-175
    • /
    • 2009
  • In this study, condensation heat transfer coefficients(HTCs) of R22, R123, R134a and R245fa are measured on both 26fpi low fin and Turbo-C tubes. All data are taken at the vapor temperature of $39^{\circ}C$ with a wall subcooling of $3{\sim}8^{\circ}C$. Test results show that HTCs of the newly developed low vapor pressure alternative refrigerant, R245fa, are $7.8{\sim}9.2%$ and $10.3{\sim}18.6%$ higher than those of R123 for 26fpi low fin tube and Turbo-C tube respectively. For all refrigerants tested, HTCs of Turbo-C enhanced tube are higher than those of 26fpi low fin tube. For the low fin tube, Beatty and Katz's prediction equation yielded 20% deviation for all fluids. The heat transfer enhancement ratio of R245fa on the Turbo-C tube is $5.9{\sim}6.4$ while that of R123 is $5.7{\sim}5.9$. From the view point of environmental safety and condensation heat transfer, R245fa is a long term candidate to replace R123 currently used in centrifugal chillers.

전열촉진관군의 순수냉매 강제대류비등 (Forced Convective Boiling of Pure Refrigerants in a Bundle of Enhanced Tubes)

  • 김내현;정호종;조진표;최국광
    • 대한기계학회논문집B
    • /
    • 제25권12호
    • /
    • pp.1831-1843
    • /
    • 2001
  • In this study, convective boiling tests were conducted for enhanced tube bundles. The surface geometry consists of pores and connecting gaps. Tubes with three different pore sizes (d$_{p}$ = 0.20, 0.23 and 0.27 mm) were tested using R-123 and R-l34a for the following range: 8 kg/m$^2$s G 26 kg/m$^2$s, 10 kW/m$^2$ q0 40 kW/m$^2$and 0.1 $\chi$ 0.9. The convective boiling heat transfer coefficients were strongly dependent on heat flux with negligible dependency on mass flux or quality. For the present enhanced geometry (pores and gaps), the convective effect was apparent. The gaps of the present tubes may have served routes for the passage of two-phase mixtures, and enhanced the boiling heat transfer. The convective effect was more pronounced at a higher saturation temperature. More bubbles will be generated at a higher saturation temperature, which will lead to enhanced convective contribution. The pore size where the maximum heat transfer coefficient was obtained was larger for R-l34a (d$_{p}$ = 0.27 mm) compared with that for R-123 (d$_{p}$ = 0.23 mm). This trend was consistent with the previous pool boiling results. For the enhanced tube bundles, the convective effect was more pronounced for R-134a than for R-123. This trend was reversed for the smooth tube bundle. Possible reasoning is provided based on the bubble behavior on the tube wall. Both the modified Chen and the asymptotic model predicted the present data reasonably well. The RMSEs were 14.3% for the modified Chen model and 12.7% for the asymptotic model.model.

R134a 및 Rl23과 비공비 혼합냉매 R134a/R123의 수평관내 이상유동양식에 관한 연구 (A Study on Two-Phase Flow Pattern of Pure Refrigerants R134a and Rl23 and Zeotropic Mixture R134a/R123 in Horizontal Tubular)

  • 임태우;김준효
    • 대한기계학회논문집B
    • /
    • 제27권8호
    • /
    • pp.1033-1041
    • /
    • 2003
  • Two-phase flow pattern data during horizontal in-tube flow boiling are presented for pure and mixed refrigerants of R134a and Rl23, The flow pattern is observed through tubular sight glasses located at inlet and outlet of the test section, which is made of a stainless steel tube, 2m long with 10mm I.D., 1.5mm wall thickness. The obtained results are compared with the available various correlations for flow pattern. The flow pattern map of Hashizume was in good agreement with the present data except the region of low mass velocity. Weisman flow pattern map was also known to satisfactorily predict data for refrigerants in the region of annular flow. In this study, the flow pattern are simply classified into two groups; stratified(including intermittent, stratified and stratified-wavy) flow and annular flow. The transition quality from stratified to annular flow was obtained by modifying the liquid Froude number.

환상유동 영역에서의 수평관내 응축 열전달계수 예측 (Prediction of condensation heat transfer coefficients inside horizontal tube in annular flow regime)

  • 곽경민;배철호;정모;이상천
    • 설비공학논문집
    • /
    • 제10권6호
    • /
    • pp.732-742
    • /
    • 1998
  • Prediction method for heat transfer coefficients in a horizontal smooth tube with forced convection condensation is proposed. In this paper, the analogy between momentum and heat transfer was applied to an annular flow regime and the logarithmic velocity distribution is applied to describe the velocity profile within the liquid film. Prediction results are compared with those of experimental ones. The test refrigerants are R113, R22, R134a, R407C(R33/R125/R134a, 23/25/52 wt%), R410A(R32/R125, 50/50 wt%) and R134a+R123(R134a/R123, 85.5/14.5 wt%) which are used under operating conditions in a condenser of air-conditioner. The proposed prediction method shows good agreement with experimental data within$\pm 30%$ for pure refrigerants. For the mixture refrigerants including the ternary mixture refrigerant R407C, condensation heat transfer from this study are higher than those from experiments. By correcting the constant in two-phase frictional multiplier, the predicated heat transfer coefficients become similar to the experimental results.

  • PDF

평활관과 낮은 핀관에서 R245fa의 풀 비등 열전달계수 (Pool Boiling Heat Transfer Coefficient of R245fa on the Plain Tube and the Low Fin Tube)

  • 박기정;이요한;임병덕;정동수
    • 설비공학논문집
    • /
    • 제23권3호
    • /
    • pp.208-215
    • /
    • 2011
  • In this work, pool boiling heat transfer coefficients(HTCs) of R22, R123, R134a, and R245fa are measured on both horizontal plain and 26 fpi low fin tubes. The pool boiling temperature is maintained at $7^{\circ}C$ and heat flux is varied from 80 $kW/m^2$ to 10 $kW/m^2$ with an interval of 10 $kW/m^2$. Wall temperatures are measured directly by thermocouples inserted through holes of 0.5 mm diameter. Test results show that HTCs of high vapor pressure refrigerants are usually higher than those of low pressure fluids in both plain and low fin tubes. On a plain tube, HTCs of R245fa are 23.3% higher than those of R123 while on a 26 fpi low fin tube, HTCs of R245fa are 46.3% higher than those of R123. The fin effect is more prominent with low vapor pressure refrigerants than with high vapor pressure ones due to a sweeping effect.

열전달 촉진관에서 대체냉매의 비등열전달계수 (Pool boiling heat transfer coefficients of alternative refrigerants in enhanced tubes)

  • 이준강;고영환;정동수;송길홍;김종보
    • 대한기계학회논문집B
    • /
    • 제22권7호
    • /
    • pp.980-991
    • /
    • 1998
  • In this study, nucleate pool boiling heat transfer coefficients of alternative refrigerants on a plain, low fin, and two enhanced tubes were measured and compared against each other. To obtain data at conditions similar to the actual evaporator, a fluid heating method was employed instead of an electric heating method in the experiments. R123, R134a, R22 and R410a were used as working fluids and data were taken at 7 deg.C ar heat fluxes of 20 ~ 100 kW/m$\^$2/. Comparison of the plain tube data against some correlations showed that the simplest correlation of Cooper based on reduced pressure predicted the data for all fluids tested with a 10% deviation. For all refrigerants, enhanced tubes composed of subsurface and subtunnels, especially Thermoexcel-E tube, showed the highest heat transfer coefficients among the tubes tested with one exception that the low fin tube's performance was better than those of enhanced tubes for high vapor pressure fluid such as R410a at high heat flux. Finally, a low fin and enhanced tubes showed higher heat transfer enhancement for low vapor pressure of R123 than for high vapor pressure fluisd. For R123, the enhancement factors for Turbo-B and Thermoexcel-E tubes were 2.8 ~ 4.8 and 4.6 ~ 8.1 respectively.