• Title/Summary/Keyword: 냉매12

Search Result 164, Processing Time 0.023 seconds

Numerical analysis on the impeller of chiller compressor using refrigerant R12 (R12 냉매를 이용한 냉동압축기 임펠러 유동해석)

  • Eum, Hark-Jin;Kang, Shin-Hyoung
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.696-701
    • /
    • 2001
  • The performance and the internal flow of the impeller of the centrifugal chiller compressor with refrigerant R12 as working fluid were studied numerically, using CFD code, CFX-Tascflow, which is commercially available. In this numerical study, the thermodynamic and transport properties of the refrigerant gas were generated by the property program of NIST and linked with main program to extend the capability of the code to refrigerant gases. Numerical study was applied to several mass flow rates near the design mass flow rate at constant rotating speed. Overall performance and flow characteristics of the impeller at impeller exit were investigated. The results were physically reasonable and showed good agreement with experimental measurement at the design flow rate.

  • PDF

The Effect of refrigerant pass & distribution in aluminum parallel flow heat exchanger (알루미늄 평행류 열교환기에서 냉매패스와 분배량 변화의 영향)

  • Kim, Jeong-Sik;Kim, Nae-Hyun;Kim, Kwang-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.12
    • /
    • pp.3546-3552
    • /
    • 2009
  • In this study, an analysis code was created for a 190*650*25-mm (W*H*D) parallel-flow evaporator, and research was done on how to increase the heat transfer rate of aluminum PF heat exchanger for application in IDU. After varying the R410A refrigerant up-down flow to two and three passes and the distribution ratio to 1:1:1 and 1:2:2, it was determined that the two-pass flow has a 30% higher partial heat transfer rate and a 25% lower heat transfer coefficient compared to the three-pass flow. As for the distribution ratios of the three-pass flow, 1:1:1 was found to have a lower refrigerant pressure loss than 1:2:2 distribution. It was assumed, though, that the refrigerant distribution had a uniform flow and that its value was thus overestimated in the actual case of maldistribution in each pass.

The performance of solar heat pump with non-freon refrigerant $CF_3CH_2F$(R-134a) for school classroom heating[II] (태양열 이용 비프레온계 $CF_3CH_2F$(R-134a)적용 열펌프시스템에 의한 학교교실 난방에 관한 연구(II))

  • Sun, Kyung-Ho;Jung, Hyun-Chai;Kim, Ki-Sun
    • Solar Energy
    • /
    • v.17 no.1
    • /
    • pp.3-15
    • /
    • 1997
  • The goal of this paper is to measure and compare the performance of solar heat pump for school classroom heating. To accomplish the goal, solar heat pump with alumium roll bond type evaporator and indoor heat exchanger(condenser) was built and fully instrumented with thermocouples and pressure transducers etc. The test results showed that the COP and capacity of R-134a($CF_3CH_2F$) were higher than those of R-12($CF_2Cl_2$). The solar heat pump system for room heating was designed to show the best efficiency that the room temperature make $18{\sim}20^{\circ}C\;and\;23{\sim}25^{\circ}C$ in Seoul during November, December, and January.

  • PDF

Condensation heat transfer characteristics of alternative refrigerants for CFC-11, CFC-12 for enhanced tubes (열전달 촉진관에서 CFC-11 및 CFC-12 대체냉매의 응축 열전달 특성 연구)

  • 조성준;황수민;정동수;김종보
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.5
    • /
    • pp.569-580
    • /
    • 1998
  • In this study, condensation heat transfer coefficients(HTCs) of a plain tube, low fin tube, and Turbo-C enhanced tube for CFC-11, HCFC-123, CFC-12, HFC-l34a are measured and compared against each other. All data are taken at the vapor temperature of 39$^{\circ}C$ with a wall subcooling temperature 3~8$^{\circ}C$. Test results show that HTCs of a low vapor pressure refrigerant, HFC-123, for a plain, low fin, and Turbo-C tubes are 10.5~20.5%, 8.2~12.2%, 16.5~19.2% lower than those of CFC-11, respectively. On the other hand, HTCs of a medium vapor refrigerant, HFC-l34a, for a plain, low fin, and Turbo-C tubes are 20.6~31.8%, 0.0~8.0%, 13.2~20.9% higher than those of CFC-12, respectively. For all refrigerants tested, HTCs of Turbo-C tube are the highest among the three tubes showing almost 8 times increase in HTCs as compared to those of a plain tube. Nusselt's prediction equation for a plain tube yielded 12% deviation for all plain tube data while Realty and Katz's prediction equation for a low fin tube yielded 20% deviation for all low tube data.

  • PDF