• 제목/요약/키워드: 냉매 R123

검색결과 20건 처리시간 0.024초

대체냉매를 적용한 대형 압축식 냉동기의 만액식 증발기에 대한 성능 해석 (Performance Analysis of the Flooded Refrigerant Evaporators for Large Tonnage Compression-Type Refrigerators Using Alternative Refrigerants)

  • 김내현
    • 한국산학기술학회논문지
    • /
    • 제17권6호
    • /
    • pp.18-25
    • /
    • 2016
  • 대형 압축식 냉동기의 증발기 전열관으로는 그간 평활관이 주로 사용되어 왔으나 최근들어 비등 성능이 우수한 성형 가공관을 많이 사용하고 있다. 증발기는 관군으로 구성되고 따라서 증발기 내 위치에 따라 냉매 상태가 다르다. 특히 R-11, R-123과 같은 저압 냉매는 압력변화에 따른 포화온도 변화가 크므로 위치에 따라 포화온도가 다르게 된다. 따라서 증발기를 적절히 설계하려면 증발기 내 각 위치에서의 냉매의 상태를 적절히 예측하여야 한다. 본 연구에서는 대형 냉동기의 만액식 증발기를 모사할 수 있는 컴퓨터 프로그램을 개발하였다. 이 프로그램은 증발기를 미소 체적으로 구분하고 각 미소 체적에 적절한 관 내외측 열전달 및 압력손실 상관식을 적용하여 해석을 수행하였다. 본 프로그램을 R-123을 사용하는 T사의 만액식 증발기 해석에 적용한 결과 만족할 만한 결과를 얻었다. 이 프로그램을 이용하여 신 냉매인 R-123, R-134a를 사용하는 만액식 증발기의 해석을 수행하였고 특히 관군 세장비의 영향을 검토하였다.

Rl23, R134a냉매 특성에 따른 증발기 설계 (Design of an evaporator heat exchanger for R123 and R134a refrigerants)

  • 김익생
    • 대한설비공학회지:설비저널
    • /
    • 제28권5호
    • /
    • pp.368-374
    • /
    • 1999
  • 최근 세계적으로 환경보호에 대한 관심이 고조됨에 따라 기술개발 방향이 환경을 고려한 규정 및 장치에 제한을 받고 있다. 따라서 냉동 공조 기기에 사용되는 기존의 CFC계열 냉매가 오존층 파괴의 주 원임이 판명됨에 따라 환경 문제가 없는 HCFC계열인 R123와 HFC R134a로의 대체가 불가피하게 되었다.

  • PDF

수평 평활관내 R245fa의 흐름 응축 열전달 특성 (Flow Condensation Heat Transfer Characteristic of R245fa in a Horizontal Plain Tube)

  • 박현신;박기정;정동수
    • 설비공학논문집
    • /
    • 제20권2호
    • /
    • pp.87-96
    • /
    • 2008
  • Flow condensation heat transfer coefficients(HTCs) of R123 and R245fa are measured in a horizontal plain tube. The main test section in the experimental flow loop is made of a plain copper tube of 9.52 mm outside diameter and 530 mm length. The refrigerant is cooled by passing cold water through an annulus surrounding the test section. Tests are performed at a fixed saturation temperature of $50\;{\pm}\;0.2\;^{\circ}C$ with mass fluxes of 50, 100, $150\;kg/m^2s$ and heat flux of $7.3{\sim}7.7\;kW/m^2$. Heat transfer data are obtained in the vapor quality range of $10{\sim}90%$. Test results show that the flow condensation HTCs of R245fa are overall 7.9% higher than those of R123 at all mass fluxes. The pressure drop of R245fa is smaller than that of R123 at the same heat flux. In conclusion, R245fa is a good candidate to replace ozone depleting R123 currently used in chillers from the view point heat transfer and environmental properties.

대체혼합냉매를 사용하는 Lorentz-Meutzner의 이중 증발기 냉동 시스템의 성능에 관한 연구 (A Study of Lorentz-Meutzner's Two Evaporator Refrigeration System Using Alternative Refrigerant Mixtures)

  • 박영무
    • 설비공학논문집
    • /
    • 제4권2호
    • /
    • pp.123-136
    • /
    • 1992
  • A preliminary thermodynamic design model of two-evaporator refrigerator/freezer system is constructed. This system is based on Lorentz-Meutzner cycle using refrigerant mixtures. This model screens alternative refrigerant (R32, R125, R143a, R22, R134a, R152a, R124, R142b, R123) mixtures to select the best performance-giving refrigerant mixtures and its composition for the system. Also, it estimates the effects of cooling temperatures of intercoolers, evaporator's area ratio, cooling load ratio on the performance of the system. The COP of the system ranges from 1.4 to 1.6, which is superior to that of the single evaporator system charged with R12 by 13% to 29%. Among 15 mixtures, R22/R123, R143a/R123, R32/R142b, and R32/R124 (in the order of high COP) are most recommendable. For the case of R22/R123, R22 mass fraction more than 0.5(Load Ratio=1.0) or 0.7(Load Ratio=0.33) is recomended in order to replace R12 without reduction in volumetric capacity when keeping the compressor as the same one. COP has the highest value with X(R22)=0.7 and 0.8, respectively. For the case of R143a/R123, in the similar manner, mass fraction of R143a is more than 0.5 or 0.6 while best performance occurs at X(R143a)=0.8. Higher temperature intercooler is more important for the performance of the system than lower temperature intercooler. The area ratio of evaporators is roughly proportional to load ratio of the evaporators.

  • PDF

3단 응축 고온/고효율 열펌프의 전산해석 (Compute simulation of a three-stage condensation heat pump)

  • 이윤학;정동수;김종보
    • 설비공학논문집
    • /
    • 제10권3호
    • /
    • pp.303-314
    • /
    • 1998
  • In this study, the performance of a multi-stage condensation heat pump was examined. Computer simulation programs were developed for 1-stage, 2-stage, and 3-stage heat pumps and R11, R123, R141b were tested as working fluids. The results showed that coefficients of performance(COPs) of an optimized 3-stage condensation heat pump are 25∼40% higher than those of a conventional 1-stage heat pump. The increase in COP, however, differed among the fluids tested. The improvement in COP largely stems from the decrease in average LMTD values in the condensers of the multi-stage system. For the 3-stage condensation heat pumps, optimized UA values of three condensers were determined to be 30∼40% of the UA value of the total condenser regardless of the working fluid. When the amount of cooling water entering into the intermediate and high-stage subcoolers is roughly 10% of the total condenser cooling water respectively, the optimum performance was achieved for the 3-stage condensation heat pump.

  • PDF

수정된 Carnahan-Starling 상태방정식을 이용한 혼합냉매의 물성계산 (Estimation of Thermodynamic Properties of Refrigerant Mixtures Using a Modified Carnaha-Starling Equation of State)

  • 김민수;김동섭;노승탁
    • 대한기계학회논문집
    • /
    • 제15권6호
    • /
    • pp.2189-2205
    • /
    • 1991
  • 본 연구에서는 혼합냉매의 열역학적 물성치를 정확하게 예측하기 위하여 척력 과 인력항으로 된 간단한 형태의 상태방정식을 택하고 이를 이용하여 순수성분에 대한 열역학적 물성치 자료와 혼합냉매에 대한 기액평형상태 자료를 이용하여 혼합물에 대 한 열역학적 물성치를 보다 더욱 정확하게 예측 할 수 있는 방법에 관해 연구하고자 한다.혼합냉매에 대한 상태방정식과 이상기체 상태의 비열자료를 기초로 열역학적 관계식을 이용하여, 압력-엔탈피, 온도-엔트로피 관계를 공식화하며, 혼합냉매에 대한 열펌프 및 냉동사이클 해석에 필요한 자료를 제시한다.

수평 전열관내 비공비 혼합냉매 R134a/R123의 강제대류비등 열전달에 관한 연구 (A Study on Forced Convective Boiling Heat Transfer of Non-Azeotropic Refrigerant Mixture R134a/R123 Inside Horizontal Smooth Tube)

  • 임태우;한규일
    • 대한기계학회논문집B
    • /
    • 제27권3호
    • /
    • pp.381-388
    • /
    • 2003
  • An experimental study was carried out to measure the heat transfer coefficient in flow boiling to mixtures of HFC-l34a and HCFC-123 in a uniformly heated horizontal tube. Tests were run at a pressure of 0.6 MPa and in the ranges of heat flux 1-50 kw/$m^2$, vapor quality 0-100 % and mass velocity 150-600 kg/$m^2$s. Heat transfer coefficients of mixture were less than the interpolated values between pure fluids both in the low quality region where the nucleate boiling is dominant and in the high quality region where the convective evaporation is dominant. Measured data of heat transfer are compared to a few available correlations proposed for mixtures. The correlation of Jung et. al. satisfactorily predicted the present data, but the data in lower quality was overpredicted and underpredicted the high quality data. The correlation of Kandlikar considerably underpredicted most of the data. and showed the mean deviation of 35.1%.

R123 열원 적용 증발식 담수 시스템 특성 연구 (Characteristics of Solar Desalination System Using Refrigerant-123 As a Heating Source)

  • 윤상국;곽희열
    • 한국태양에너지학회 논문집
    • /
    • 제30권3호
    • /
    • pp.33-38
    • /
    • 2010
  • The evaporative desalination system using solar thermal energy would be the efficient and attractive method to get fresh water from brine due to low carbon dioxide generation. In this research the solar desalination system as a heating source of refrigerant R123 in the evaporator was considered. The circulation of refrigerant in the evaporator can reduce the energy consumption of the system, because of using the latent heat of the refrigerant 123 instead of the sensible heat of present hot water. The system was comprised of the single-stage fresh water production unit on the capacity of 1ton/day with shell and tube type evaporator, heaters instead of solar collector to supply the proper heat to refrigerant, and refrigerant and brine circulation systems. Various operating flowrate and temperature ranges were varied in the experiments to get the optimum design data. The results showed that the optimum flow rate of brine feed rate to evaporator was 1.2Liter/min, and the yield of fresh water was increased as higher temperature of feed brine. It was confirmed that the circulation flowrate of heating source of refrigerant was decrease of one fifth of the present warm water system, and very efficient system for solar desalination.

수평 전열관내 유동비등하는 순수냉매와 혼합냉매의 열전달 특성에 관한 연구 (A Study on Heat Transfer Characteristics in Flow Boiling of Pure Refrigerants and Their Mixtures in Horizontal Tube)

  • 임태우;한규일
    • 설비공학논문집
    • /
    • 제15권2호
    • /
    • pp.144-151
    • /
    • 2003
  • An experimental study was carried out in a uniformly heated horizontal tube to examine heat transfer characteristics of pure refrigerants, R134a and R123, and their mixtures during flow boiling. The flow pattern was also observed through tubular sight glasses with an internal diameter of 10 mm located at the inlet and outlet of the test section. Tests were run at a pressure of 0.6 MPa and in the heat flux ranges of 5~100 kW/$m^2$, vapor Quality 0~100 percent and mass velocity of 150-600 kg/$m^2$s. The observed flow patterns were compared to the flow pattern map of Kattan et al., which predicted well the present data over the entire range of mass velocity employed in this study. Heat transfer coefficients of the mixture were less than the interpolated values between pure fluids both in the low quality region where the nucleate boiling is dominant and in the high quality region where the convective evaporation is dominant.

수평관에서 R245fa의 응축 열전달계수 (Condensation Heat Transfer Coefficients of R245fa on a Plain Tube)

  • 심윤보;박기정;정동수;김종성
    • 설비공학논문집
    • /
    • 제19권8호
    • /
    • pp.555-562
    • /
    • 2007
  • In this study, condensation heat transfer coefficients (HTCs) of R22, R134a, R245fa and R123 are measured on a horizontal plain tube. All data are taken at the vapor temperature of $39^{\circ}C$ with a wall subcooling temperature $3-8^{\circ}C$. Test results show the HTCs of newly developed alternative low vapor pressure refrigerant, R245fa, on a plain tube are 9.5% higher than those of R123 while they are 3.3% and 5.6% lower than those of R134a and R22 respectively. Nusselt's prediction equation for a plain tube underpredicts the data by 13.7% for all refrigerants while a modified equation yielded 5.9% deviation against all data. From the view point of environmental safety and condensation heat transfer, R245fa is a long term good candidate to replace R123 used in centrifugal chillers.