• Title/Summary/Keyword: 냉매 22

Search Result 235, Processing Time 0.022 seconds

Experimental Analysis of the Effect of Phase Change at the Entrance of a Capillary Tube by Sub-cooling Control on Refrigerant-induced Noise (과냉도에 따른 모세관 입구단에서의 냉매 상태 변화가 냉장고 냉매 소음에 미치는 영향의 실험적 분석)

  • Oh, Young-Hoo;Kim, Min-Seong;Han, Hyung-Suk;Kim, Tae-Hoon;Jeong, Weui-Bong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.12
    • /
    • pp.1184-1190
    • /
    • 2012
  • This study is focused on the experimental analysis of the noise induced by phase change of refrigerant at the entrance of capillary tube. The refrigerant is usually two-phase condition when it flowed into the capillary tube. At the entrance of capillary tube, the phase condition of refrigerant is formed by sub-cool control. If it has sufficient sub-cool temperature, all of the vapor refrigerants turned to liquid, which means there is only liquid. Otherwise, the gas is coexisted. Based on this theory, we experiment on each case by changing sub-cool temperature using refrigerant-supplying equipment. The noise level is measured for each case and compared.

Forced Convective Evaporating Heat Transfer of Non-azeotropic Refrigerant Mixtures in a Horizontal Smoothed Tube (수평 평활관내에서 비공비혼합냉매의 강제대류 증발열전달)

  • Park, K.W.;Oh, H.K.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.2
    • /
    • pp.225-233
    • /
    • 1995
  • Experiments were performed to investigate the heat transfer characteristics of nonazeotropic mixture R-22+R-114 in a heat pump system. The ranges of parameter, such as heat flux, mass flow rate, and quality were $8,141{\sim}32,564W/m^2$, 24~58kg/h, and 0~1, respectively. The overall compositions of the mixtures were 50 and 100 per-cent of R-22 by weight for R-22+R-114 mixture. The results indicated that there were distinct different heat transfer phenomena between the pure substance and the mixture. In case of pure refrigerant the heat transfer rates for cooling were strongly dependent upon quality of the refrigerant. Overall evaporating heat transfer coefficients for the mixture were somewhat lower than pure R-22 values in the forced convective boiling region. For a given flow rate, the heat transfer coefficient at the circumferential tube wall(top, side, and bottom of the test tube) for R-22/R-114(50/50wt%)mixture, however, was higher than for pure R-22 at side and bottom of the tube. Furthermore, a prediction for the evaporating heat transfer coefficient of the mixtures was developed based on the method of Yoshida et.al.'s. The resulting correlation yielded a good agreement with the data for the refrigerant mixtures.

  • PDF

Condensing Heat Transfer Characteristics on a Heat Pump System Using Non-Azeotropic Refrigerant Mixtures (비공비혼합냉매를 사용하는 열펌프의 응축열전달 특성)

  • 박기원;오후규;김욱중
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.1125-1133
    • /
    • 1995
  • Experiments were performed to investigate the condensing heat transfer characteristics of non-azeotropic mixtures of R-22 and R-114 in a heat pump system with a horizontal smooth tube as a condenser. The ranges of parameters, such as heating capacity, mass flow rate of refrigerant and quality were 780-3,480W, 24-71kg/h, and 0-1, respectively. The overall compositions of R-22 in a R-22/114 mixture were 25, 50, 75 and 100 per cent by wight. The results show that the overall condensing heat transfer coefficients for the mixtures were lower than the pure R-22 values. Local heat transfer coefficient of the pure R-22 was hghest at the top of the test tube. The local heat transfer coefficient of R-22/114 (50/50 wt%) at side and bottom of the test tube was higher than that at the top. From the obtained data, a prediction for the condensing heat transfer coefficients of the mixture was done based on the method of Fujii.

Flow Boiling Heat Transfer Characteristics of R22 Alternative Refrigerants in a Horizontal Microfin Tube (R22 대체 냉매의 마이크로 핀관내 흐름 비등 열전달 특성)

  • 한재웅;김신종;정동수;김영일
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.8
    • /
    • pp.692-700
    • /
    • 2001
  • Flow boiling heat transfer coefficients(HTCs) of R22, R134a, R407C, and R410A were measured experimentally for a horizontal plain and a microfin tube. Experimental apparatus was composed of 3 main parts: a refrigerant loop, a water loop and a water-glycol loop. The test section in th refrigerant loop was made of a copper tube of 9.52 mm outer diameter and 1 m length for both tubes. The refrigerant was heated by passing hot water through an annulus surrounding the test section. Tests were performed at a fixed refrigerant saturation temperature of $5^{\circ}C$ with mass fluxes of 100~300 kg/$m^2$s. Test results showed that at similar mass flux the flow boiling HTCs of R134a were similar to those of R22 for both plain and microfin tube. HTCs of R407C were similar to those of R22 for a plain tube but lower than those of R2 by 25~48% for a microfin tube. And HTCs of R410A were higher than those of R2 by 20~63% for a plain tube and were similar to those of R22 for a microfin tube. In general, HTCs of a microfin tube were 1.8~5.7 times higher than those of a plain tube.

  • PDF

External Condensation Heat Transfer Coefficients of R1234yf (신냉매 R1234yf의 외부 응축 열전달계수)

  • Park, Ki-Jung;Lee, Cheol-Hee;Kang, Dong-Gyu;Jung, Dong-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.6
    • /
    • pp.345-352
    • /
    • 2010
  • In this study, external condensation heat transfer coefficients(HTCs) of R134a and R1234yf are measured on a plain, low fin, and Turbo-C tubes at the saturated vapor temperature of $39^{\circ}C$ with the wall subcooling of $3{\sim}8^{\circ}C$. R1234yf is a new alternative refrigerant of low greenhouse warming potential for replacing R134a which is one of the greenhouse gases controlled by Kyoto protocol and is used extensively in mobile air-conditioners. Test results show that the external condensation HTCs of R1234yf are very similar to those of R134a for all three surfaces tested. For the application of condensation heat transfer correlations to the design of condensers charged with R1234yf, thorough property measurements are needed for R1234yf in the near future.

A Comparison of Flow Condensation HTCs of R22 Alternatives in the Multi-Channel Tube (다채널 알루미늄 평판관내 R22와 R134a의 흐름 응축 열전달 성능 비교)

  • 서영호;박기정;정동수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.6
    • /
    • pp.589-598
    • /
    • 2004
  • Flow condensation heat transfer coefficients (HTCs) of R22 and R134a were measured on a horizontal 9 hole aluminum multi-channel tube. The main test section in the refrigerant loop was made of a flat multi-channel aluminum tube of 1.4 mm hydraulic diameter and 0.53 m length. Refrigerant was cooled by passing cold water through an annulus surrounding the test section. Data were obtained in the vapor qualities of 0.1∼0.9 at mass flux of 200∼400 kg/$m^2$s and heat flux of 7.3∼7.7 ㎾/$m^2$ at the saturation temperature of 4$0^{\circ}C$. All popular correlations in single-phase subcooled liquid and flow condensation originally developed for large single tubes predicted the present data of the flat tube within 20% deviation when effective heat transfer area is used in determining experimental data. This suggests that there is little change in flow characteristics and patterns when the tube diameter is reduced down to 1.4 mm diameter range. Thermal insulation for the outer tube section surrounding the test tube for the transport of heat transfer fluid is very important in fluid heat-ing or cooling type heat transfer experimental apparatus.

A Comparison of Flow Condensation HTCs of R22 Alternatives in the Multi-Channel Tube (알루미늄 다채널 평판관내 R22의 흐름응축 열전달 성능 비교)

  • Seo, Young-Ho;Lim, Dae-Taeg;Park, Ki-Jung;Jung, Dong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1270-1275
    • /
    • 2004
  • Flow condensation heat transfer coefficients(HTCs) of R22 and R134a were measured on horizontal aluminum multi-channel tube. The experimental apparatus was composed of three main parts ; a refrigerant loop, a water loop and a water-ethylene glycol loop. The test section in the refrigerant loop was made of aluminum multi-channel tube of 1.4 mm hydraulic diameter and 0.53 m length. The refrigerant was cooled by passing cold water through an annulus surrounding the test section. The data scan vapor qualities $(0.1{\sim}0.9)$, mass flux ($200{\sim}400$ $kg/m^{2}s$) and heat flux ($7.3{\sim}7.7$ $kW/m^{2}$) at $40{\times}0.2^{\circ}C$ saturation temperature in small hydraulic diameter tube. It was found that some well-known previous correlations were not suitable for multichannel tube. So, It must develop new correlations for multi-channel tubes.

  • PDF

The Evaporation Flow Patterns and Heat Transfers of R-22 and R-134a in Small Diameter Tubes (세관내 R-22 and R-134a의 증발 유동양식과 열전달)

  • Son, Chang-Hyo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.3
    • /
    • pp.275-283
    • /
    • 2007
  • 본 논문은 세관(ID<7 mm) 내 R-22와 R-134a의 증발 열전달과 유동양식에 대한 실험적 연구이다. R-22와 R-134a의 유동양식을 관찰하기 위해 내경 2와 8 mm의 파이렉스 튜브를 사용하였고, 열전달 계수는 내경 1.77, 3.35, 5.35 mm의 수평 평활동관에 대해서 측정하였다. 증발 유동양식에서 내경 2 mm의 환상류 영역이 내경 8 mm에 비해 저건도 영역에서 발생하는 것을 확인할 수 있었고, 내경 2 mm의 유동양식은 Mandhane의 선도와 많은 오차를 보였다. 세관(ID<7 mm) 내 증발 열전달 계수는 종래의 대구경관(ID>7 mm)에 비해 관직경에 대한 영향이 많이 나타나는 것을 알 수 있었다. 내경 1.77 mm의 열전달 계수는 내경 3.36 mm와 5.35 mm에 비해서 20내지 30% 정도 높은 것을 나타났다. 또한 종래의 열전달 상관식(Shah's, Jung's, Kandlikar's and Oh-Katsuda's correlation)과 비교한 결과, 실험 데이터는 상관식과 많은 이탈 정도를 보였다. 따라서 실험데이타를 기초로 세관내 R-22와 R-134a에 적용할 수 있는 증발 열전달 상관식을 새로이 제안하였다.

A Study on Leakage Characteristics of a Scroll Compressor with alternative Refrigerants of R22 (R22 대체냉매를 적용한 스크롤 압축기의 누설 특성에 관한 연구)

  • Youn, Young;Kim, Yong-Chan;Min, Man-Ki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.5
    • /
    • pp.377-387
    • /
    • 2001
  • This paper presents leakage characteristics of a scroll compressor applying alternative refrigerants of R22 such as R407c and R410a under actual operating conditions. Because leakage in a scroll compressor produce significant losses and degradation of performance, those should be clarified to design a high efficient scroll compressor with alternative refrigerants of R22. However, flank and tip leakage characteristics of a scroll compressor with alternative refrigerants are very limited in open literature. In the present study, both experimentation and modeling of the leakages in the scroll compressor were performed. As a result, it was observed that the leakages of the scroll compressor with R407c increased by 15%, and that with R410a increased by 76% as compared to the compressor applying R22 under standard load conditions due to a higher upstream pressure and a higher pressure difference between pockets.

  • PDF

External Condensation Heat Transfer Coefficients of R22 Alternative Refrigerants and R134a According to the Saturated Vapor Temperature Change on a Smooth Tube (수평관에서 R22 대체냉매 및 R134a의 포화증기 온도변화에 따른 외부 응축 열전달계수에 관한 연구)

  • Yoo Gil-Sang;Hwang Ji-Hwan;Park Ki-Jung;Jung Dongsoo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.8
    • /
    • pp.729-735
    • /
    • 2005
  • In this study, external condensation heat transfer coefficients (HTCs) were measured on a horizontal smooth tube at the saturated vapor temperature of $30^{\circ}C,\;39{\circ}C,\;and\;50^{\circ}C$ for R22, R410A, R407C, and R134a with the wall subcooling of $3\~8^{\circ}C$. The HTCs of all refrigerants are the highest at $30^{\circ}C,\;39{\circ}C,\;and\;50^{\circ}C$ in order. This trend is due to its excellent thermodynamic properties of the liquid phase. The measured data of HTCs were compared with the calculated ones by Nusselt's equation for a smooth tube. Measured HTCs of R22, R134a, R410A are $4.2\~7.5\%$ higher than prediction respectively while those of R407C are $15.6\~28.9\%$ lower than the prediction.