• 제목/요약/키워드: 냉매 22

검색결과 235건 처리시간 0.019초

수평증발관내 R22/R114 혼합냉매의 열전달 특성에 관한 연구 (A Study for Evaporation Heat Transfer Characteristic of R22/Rl14 Refrigerant Mixtures in a Horizontal Tube)

  • 윤치한;이종인;하옥남
    • 설비공학논문집
    • /
    • 제12권5호
    • /
    • pp.502-510
    • /
    • 2000
  • Evaporation heat transfer characteristics were studied in a horizontal tube using R22/R114 non-azotropic refrigerant mixture. the heat transfer coefficient was high in the upper part for pure refrigerants, and heat transfer coefficient was low in the lower part for refrigerant mixtures. In the low quality region where nucleate boiling was dominant, the average heat transfer coefficient was low. In the region where forced convection was dominant, heat transfer coefficient was high. Results show that the heat transfer coefficient for pure refrigerants obtained by experiments were lower than those of Yoshida et al. but agreed well with Jung et al., and Chen et al. data. But the heat transfer coefficients for refrigerant mixtures were lower about 20% than those predicted by the equation for pure refrigerant.

  • PDF

탄화수소계 냉매를 이용한 수냉식 히트점프의 성능특성에 관한 연구 (Study on Performance Characteristic of Water-Cooled Type Beat Pump Using Hydrocarbon Refrigerants)

  • 전철호;이호생;김재돌;윤정인
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권8호
    • /
    • pp.870-876
    • /
    • 2005
  • This study of the performance characteristics of natural refrigerants such as R-290 (propane), R-6OOa (iso-butane) and R-1270 (propylene) has investigated to compare with conventional HCFC's refrigerant R-22 for water-cooled heat pump system. The experimental apparatus has basic parts of cycle that uses the water as a heat source. The Performance of the water-cooled system using hydrocarbon refrigerants had been getting better than R-22 from start-up to the similar evaporating temperature after stabilizing system. Through the above it is possible that hydrocarbon refrigerants could be drop-in alternatives for R-22.

혼합냉매 R-407C의 증발 열전달과 압력강하 (Evaporation Heat Transfer and Pressure Drop of Mixture Refrigerant R-407C)

  • 노건상;오후규;손창효
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권4호
    • /
    • pp.542-549
    • /
    • 2008
  • The evaporation heat transfer coefficient and pressure drop of R-22 and R-407C in a horizontal copper tube were investigated experimentally. The main components of the refrigerant loop are a receiver, a compressor, a mass flow meter, a condenser and a double pipe type evaporator (test section). The test section consists of a smooth copper tube of 6.4 mm inner diameter. The refrigerant mass fluxes were varied from 100 to $300\;kg/m^2s$ and the saturation temperature of evaporator were $5^{\circ}C$. The evaporation heat transfer coefficients of R-22 and R-407C increase with the increase of mass flux and vapor quality. The evaporation heat transfer coefficients of R-22 is about $5.68{\times}46.6%$ higher than that of R-407C. The evaporation pressure drop of R-22 and R-407C increase with the increase of mass flux. The pressure drop of R-22 is similar to that of R-407C. In comparison with test results and existing correlations, correlations failed to predict the evaporation heat transfer coefficient of R-22 and R-407C. therefore, it is necessary to develope reliable and accurate predictions determining the evaporation heat transfer coefficient of R-22 and R-407C in a horizontal tube.

2중 관형 열교환기내 비공비혼합냉매 R-22+R134a의 응축열전달 특성에 관한 연구 (Condensation Heat Transfer Characteristics of Non-Azeotropic Refrigerant Mixture(NARMs) Inside Double Pipe Heat Exchangers)

  • 노건상;오후규;권옥배
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권3호
    • /
    • pp.91-100
    • /
    • 1996
  • Experimental results for forced convection condensation of non-azeotropic refrigerant mixtures inside a horizontal smooth tube are presented. The mixtures of R-22+R-134a and pure refrigerants R-22 and R-134a are used as the test fluids and a double pipe heat exchanger of 7.5mm ID and 4800mm long inside tube is used. The range of parameters are 100-300kg/h of mass flow rate, 0-1.0 of quality, and 0, 33, 50, 67, and 100 weight percent of R-22 mass fraction in the mixtures. The heat flux, vapor pressure, vapor temperature and tube wall temperature were measured. Using the data, the local and average heat transfer coefficients for the condensation have been obtained. In the same given experimental conditions, the liquid heat transfer coefficients for NARMs were considerally lower than that of the pure refrigerant of R-22 and R-134a. Local heat transfer characteristics for NARMs were different from pure refrigerant R-22 and R-134a. In some regions, local heat transfer coefficients for NARMs were increased in the following order ; Bottom$\rightarrow$Top$\rightarrow$Side. The condensation heat transfer coefficients for NARMs increased with mass velocity, heat flux, and quality, but were considerably lower than that of pure refigerant R-22 and R-134a.

  • PDF

세관내 R-22 대체냉매의 응축압력강항에 관한 연구 (The Condensation Pressure Drop of Alternative Refrigerants for R-22 in Small Diameter Tubes)

  • 오후규;손창효;최영석;김기수
    • 대한기계학회논문집B
    • /
    • 제25권9호
    • /
    • pp.1245-1252
    • /
    • 2001
  • The condensation pressure drop for pure refrigerants R-22, R-134a, and a binary refrigerant mixture R-410A flowing in a small diameter tube was investigated. The test section is a counterflow heat exchanger with refrigerant flowing in the inner tube and coolant flowing in the annulus. The test section consists of 1220 [mm] length with horizontal copper tube of 3.38 [mm] outer diameter and 1.77 [mm] inner diameter. The refrigerant mass fluxes ranged from 450 to 1050 [kg/(㎡$.$s)] and the average inlet and outlet qualities were 0.05 and 0.95, respectively. The main experimental results were summarized as follows : In the case of single-phase flow, the pressure drop of R-134a is much higher than that of R-22 and R-410A for the same Reynolds number. The friction factors for small diameter tubes are higher than those predicted by Blasius equation. In the case of two-phase flow, the pressure drop increases with increasing mass flux and decreasing quality. The pressure drop of R-134a is much higher than that of R-22 and R-410A for the same mass flux. Most of correlations proposed in the large diameter tube showed enormous deviations with experimental data. However, the correlation predicted by Honda et al showed relatively good agreement with experimental data for R-134.

알루미늄 다채널 평판관내 R22 대체냉매의 흐름 응축 열전달 성능 비교 (Flow Condensation Heat Transfer Coefficients of R22 Alternative refrigerants in Aluminum Multi-Channel Tube)

  • 이기영;이민행;정동수
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2005년도 동계학술발표대회 논문집
    • /
    • pp.249-255
    • /
    • 2005
  • Flow condensation heat transfer coefficients(HTCs) of R22, R4IO, Propane(R290) were measured inside a horizontal 9 hole aluminum multi-channel flat tube. The main test section in the refrigerant loop was made of a 0.53 m long multi-channel flat tube of hydraulic diameter of 1.4 mm. Refrigerant was cooled by passing cold water through an annulus surrounding the test section. Data were obtained in qualities of 0.1 ${\sim}$ 0.9 at mass flux of $200{\sim}400$ $kg/m^2s$ and heat flux of $7.3{\sim}7.7$ $kW/m^2$ at the saturation temperature of $4^{\circ}C$. All popular heat transfer correlations in single-phase subcooled liquid flow and flow condensation originally developed for large single tubes predicted the present data of the multi channel flat tube within 25% deviation when effective heat transfer area was used in determining experimental data. This suggests that there is little change in flow characteristics and patterns when the tube diameter is reduced down to 1.4 mm diameter range. Hence, a modified correlation based on the present data was proposed which could be applied to small diameter tubes with effective heat transfer area. The correlation showed a mean deviation of less than 20% for all data.

  • PDF

HCFC-22 대체냉매의 모세관 선정 (Selection of Capillary Tubes for HCFC-22 Alternative Fluids)

  • 정동수;김종보
    • 설비공학논문집
    • /
    • 제7권3호
    • /
    • pp.435-449
    • /
    • 1995
  • In this paper, pressure drop through a capillary tube is modeled to determine the length of a capillary tube for a given set of conditions. HCFC-22 and its alternatives, HFC-134a, R407B, and R410A are used as working fluids. The conditions on which the model is tested are as follows : condensing temperature; 40.0, 45.0, 50.0, $55.0^{\circ}C$, degree of subcooling;0.0, 2.5, $5.0^{\circ}C$, capillary tube exit condition;choked flow, capillary tube diameter;1.2~2.4mm, mass flow rate;5.0~50.0g/sec. The results justify the use of Stoecker's model which yields the results very close to the values in ASHRAE handbook. While McAdams' method yields much better results than Duckler's in calculating the viscosity of the fluid in 2-phase, the friction factor suggested by Stoecker seems to be the best for capillary tubes of large diameter used in residential air conditioners. For each refrigerant, 372 data with various variables are calculated by the model. The results show that capillary tube length varies very uniformly with changes in condensing temperature and degree of subcooling. Based on this fact, regression analysis is performed to determine the dependence of mass flow rate on the length and diameter of a capillary tube, condensing temperature, and degree of subcooling. Thus determined correlation yields a mean deviation of 2.36% for 1,488 data, showing an excellent agreement.

  • PDF