• Title/Summary/Keyword: 냉매 22

Search Result 235, Processing Time 0.024 seconds

Heat Transfer Characteristics of R-1270 using 12.7mm Inner Fin Tube (12.7mm 내면핀관을 이용한 R-1270의 열전달 특성)

  • Yoon, Jung-In;Seong, Gwang-Hoon;Shim, Gyu-Jin;Jin, Byoung-Ju;Baek, Seung-Moon;Moon, Choon-Geun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.534-541
    • /
    • 2008
  • This paper deals with the heat transfer characteristics of R-290 (Propane), R-600a (Iso-butane) and R-1270 (Propylene) as an environment friendly refrigerant and R-22 as a HCFC's refrigerant for evaporating. The experimental apparatus has been set-up as conventional vapor compression type refrigeration and air-conditioning system. The test section is a horizontal double pipe heat exchanger. Evaporating heat transfer measurements were performed for smooth tube with the outer diameters of 12.70, 9.52 and 6.35 mm and micro-fin tube 12.70 mm, respectively. For the smooth and micro-fin tubes measured in this study, the evaporating heat transfer coefficient was enhanced according to the increase of the mass flux and decrease of the tube diameter. The local evaporating heat transfer coefficients of hydrocarbon refrigerants were superior to those of R-22 and the maximum increasing rate of heat transfer coefficient was found in R-1270. The average evaporating heat transfer coefficients in hydrocarbon refrigerants showed 20 to 28% higher values than those of R-22. Also, the evaporating heat transfer coefficients of R-22 in the tube diameter of the 12.70 mm smooth and micro-fin tube were compared. Generally, the local heat transfer coefficients for both types of tubes increased with an increase of the mass flux. The heat transfer enhancement factor (EF) between smooth and micro-fin tube varied from 1.9 to 2.7 in all experimental conditions.

The Heat Pump Application to the Food Concentration (열 펌프의 식품 농축에의 이용 연구)

  • Park, Noh-Hyun;Kim, Byeong-Sam;Kang, Tong-Sam;Shin, Dong-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.486-491
    • /
    • 1987
  • The performance and applicability to food concentration of heat pump were investigated. During heating the water of spa from $43^{\circ}C$ to $51^{\circ}C$, COP's of heat pump (R-12, 150 HP) were 4.03 at heating part and 3.5 at cooling part. And, the efficiency of compressor (${\alpha}$) was 0.477 While the city water was heated to $39^{\circ}C$ by heat pump (R-22, 10 HP), its COP's were 3.0 at heating part and 1.87 at cooling part. During concentrations sucrose solution by centrifugal evaporator (ALFA-LAVAL CO, CTIB) with heat pump, heat capacity for condensating water vapor was required greater 15% than the latent heat for concentrating and then the overall heat transfer coefficient was $1196\;Kcal/m^{2}.\;h.\;^{\circ}C$. When low temperature concentration ($30-35^{\circ}C$, 28-40 Torr) of garlic extract was carried out by the water of $60^{\circ}C$ and $15^{\circ}C$ adjusted by heat pump, the ratio of heat capacity for concentrating vs. that for condensating of water vapor was 0.961.

  • PDF

Basic performance analysis of ocean thermal energy conversion using the refrigerant mixture R32/R152a (R32/R152a 혼합냉매를 적용한 해양온도차발전의 기초성능해석)

  • Cha, Sang Won;Lee, Ho Saeng;Moon, Deok Soo;Kim, Hyeon Ju
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.4
    • /
    • pp.502-507
    • /
    • 2014
  • In this paper, performance characteristics of cycles were studied when mixed working fluid was used for ocean thermal energy conversion (OTEC). Among the various mixed refrigerants for industrial heat-pump, R32/R152a used in ocean thermal energy conversion system. For simulations, R32/R152a were used in existing closed cycle and Kalina cycle which is used only ammonia and water as mixed refrigerant. Temperature of the warm heat source was 26 and 29 celsius degree, temperature of the cold heat source was 5 celsius degree. In results of simulation, Gross power of the closed cycle on R32 was 22kW, and efficiency of the cycle was 2.02%. When the mixed refrigerant of R32/R152a, in the ratio of 90 to 10, gross power of the closed cycle was 29.93kW, and efficiency of the cycle was 2.78%. Gross power and cycle efficiency of R32/R152a increased by 36% and 37% than those of existing single refrigerant. Additionally, the same simulations were conducted in Kalina cycle with the same various composition ratio of mixed refrigerant.

Performance Evaluation of Rough Rice Low Temperature Drying Using Heat Pump (열펌프를 이용한 벼의 저온건조성능평가)

  • Kim, Hoon;Han, Jae-Woong
    • Food Engineering Progress
    • /
    • v.13 no.4
    • /
    • pp.308-313
    • /
    • 2009
  • This study was conducted to design and fabricate a heat pump that can produce some weather conditions similar to those of the dry season of the rough rice in Korea, and to investigate basic performances of the apparatus. During the drying test, the amount of energy consumption and drying characteristics were measured at four different temperature levels ranging between 20$^{\circ}C$ and 50${^{\circ}C}$. In the psychrometric chart, the freezing capacity and refrigerant circulation ratio of the heat pump were 173 kJ/kg and 49.6 kg/hr, respectively. Therefore, coefficient of performance was 5.5, which was superior to that of refrigerant R-22 (4.0) in standard refrigeration cycle. In addition, the time to reach target drying temperature (30${^{\circ}C}$) and relative humidity (40%) were 6 minutes and 7 minutes, respectively. Temperature differences between the drying temperature and the rice were 1.5${^{\circ}C}$ and 8.5${^{\circ}C}$ at the drying temperatures of 21.9${^{\circ}C}$ and 48.7${^{\circ}C}$, respectively. This result demonstrated that the increased temperature of the rice in the drying section decreased sufficiently in the tempering section. At the drying temperatures of 21.9, 30.7 38.8, and 48.7${^{\circ}C}$, drying rates were 0.29, 0.61, 0.85, and 1.26%/hr, respectively, which were similar to those of commercial dryer. In addition, the amounts of energy consumption were 325, 667, 692, and 776 kJ/kg, respectively. These results showed that this dryer saved up to 86% of energy consumption compared with the commercial dryer, which uses 4,000-5,000 kJ/kg of fossil fuel.

A Study on the Performance of Solar Heat, Pump Cycle System for $CH_2F_2$, $CF_3CHF_2$ and $CF_3CH_2F$( I ) ($CH_2F_2-CF_3CH_2F-CF_3CHF_2$계 냉매적용 태양열 열펌프시스템 성능 연구( I ))

  • Lee, Soon-Bok;Jung, Hyun-Chai;Bae, Chun-Woo;Sun, Kyung-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.2
    • /
    • pp.71-79
    • /
    • 2003
  • The goal of this paper is to measure and compare the performance of solar heat pump for refrigerants. To accomplish the goal, solar heat pump with aluminum roll bond type evaporator and indoor heat exchanged(condenser) was built. The test results showed that the COP and heating capacity of HFC-32/125/134a(23/25/52 wt%, $CH_2F_2/CF_3CHF_2/CF_3CH_2F$) were higher than those of HCFC-22$(CHClF_2)$. A study proved that best conditions to use heating system that is about $40m^2$ and $80m^2$. The COP range of the whole system was from 4 to 6 according to the solar collector's area variation. Hydrochlo-rofluorocarbon HCFC-22$(CHClF_2)$ is included in the compound to be controlled. HFC-32/125/134a(23/25/52 wt%, $CH_2F_2/CF_3CHF_2/CF_3CH_2F$) is the most suitable replacement HCFC-22$(CHClF_2)$ in solar heat pump application. The solar heat pump system was designed to show the best efficiency that the room temperature make $18\sim20^{\circ}C$ and $23\sim25^{\circ}C$ in Seoul during the fall season.

Pool boiling heat transfer coefficients of alternative refrigerants in enhanced tubes (열전달 촉진관에서 대체냉매의 비등열전달계수)

  • Lee, Jun-Gang;Go, Yeong-Hwan;Jeong, Dong-Su;Song, Gil-Hong;Kim, Jong-Bo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.7
    • /
    • pp.980-991
    • /
    • 1998
  • In this study, nucleate pool boiling heat transfer coefficients of alternative refrigerants on a plain, low fin, and two enhanced tubes were measured and compared against each other. To obtain data at conditions similar to the actual evaporator, a fluid heating method was employed instead of an electric heating method in the experiments. R123, R134a, R22 and R410a were used as working fluids and data were taken at 7 deg.C ar heat fluxes of 20 ~ 100 kW/m$\^$2/. Comparison of the plain tube data against some correlations showed that the simplest correlation of Cooper based on reduced pressure predicted the data for all fluids tested with a 10% deviation. For all refrigerants, enhanced tubes composed of subsurface and subtunnels, especially Thermoexcel-E tube, showed the highest heat transfer coefficients among the tubes tested with one exception that the low fin tube's performance was better than those of enhanced tubes for high vapor pressure fluid such as R410a at high heat flux. Finally, a low fin and enhanced tubes showed higher heat transfer enhancement for low vapor pressure of R123 than for high vapor pressure fluisd. For R123, the enhancement factors for Turbo-B and Thermoexcel-E tubes were 2.8 ~ 4.8 and 4.6 ~ 8.1 respectively.

Prediction of condensation heat transfer coefficients inside horizontal tube in annular flow regime (환상유동 영역에서의 수평관내 응축 열전달계수 예측)

  • Kwak, Kyung-Min;Bae, Chul-Ho;Jung, Mo;Lee, Sang-Chun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.6
    • /
    • pp.732-742
    • /
    • 1998
  • Prediction method for heat transfer coefficients in a horizontal smooth tube with forced convection condensation is proposed. In this paper, the analogy between momentum and heat transfer was applied to an annular flow regime and the logarithmic velocity distribution is applied to describe the velocity profile within the liquid film. Prediction results are compared with those of experimental ones. The test refrigerants are R113, R22, R134a, R407C(R33/R125/R134a, 23/25/52 wt%), R410A(R32/R125, 50/50 wt%) and R134a+R123(R134a/R123, 85.5/14.5 wt%) which are used under operating conditions in a condenser of air-conditioner. The proposed prediction method shows good agreement with experimental data within$\pm 30%$ for pure refrigerants. For the mixture refrigerants including the ternary mixture refrigerant R407C, condensation heat transfer from this study are higher than those from experiments. By correcting the constant in two-phase frictional multiplier, the predicated heat transfer coefficients become similar to the experimental results.

  • PDF

The Design and Performance Test of a Centrifugal Compressor for HFC-134a Refrigerant (HFC-134a용 원심압축기의 성능시험 및 설계방안)

  • Sin, Jung-Kwan;Kim, Kyung-Hoon;Kang, Shin-Hyoung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.3
    • /
    • pp.139-148
    • /
    • 2010
  • A centrifugal compressor for HFC-134a has been newly designed and developed. Flow analysis using commercial programs was used to evaluate performance and internal flow of the impeller, inlet guide vane and diffuser etc. The purpose of this study is to establish the design theory necessary to the development of HFC-134a centrifugal compressors and to supply basic data related to design by reviewing design values and experimental values through the performance test. The compressor for HFC-134a was also investigated experimentally to check compression performance. The calculated data coincide the test results of compressor. The data obtained in the present study are useful for design of HFC-134a centrifugal compressors.

Comparison of Correlations of Saturated Vapor Density for Some Refrigerants (냉매의 포화증기밀도 상관식 비교)

  • Park, Kyoung-Kuhn;Kang, Byung-Ha;Jang, Si-Youl
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.6
    • /
    • pp.457-463
    • /
    • 2007
  • Various correlations of saturated vapor density in a truncated power series form are tested and compared in this study. Saturated vapor density correlation can be expressed relating logarithmic reduced density to the reduced temperature. Five types of correlation has been investigated using saturated vapor density data for 22 pure substance refrigerants from ASHRAE (American Society of Heating, Reftigerating and Air-Conditioning Engineers, Inc.) property tables and NIST (National Institute of Standards and Technology) Chemistry Webbook. Correlations are fitted to the data points by least squares method. Data points are equally weighted. The best type of correlation among the five types is suggested. The results obtained indicate that the best correlations with 3, 4, and 5 terms yield average AAD's (Average Absolute Deviation) of 0.27%, 0.04%, and 0.02%, respectively, while widely used conventional correlations with 3, 4, and 5 terms yield those of 1.19%, 0.61%, and 0.17%. The suggested type of correlation could reduce the number of terms while improving performance.

Feasibility Study on Modified OTEC (Ocean Thermal Energy Conversion) by Plant Condenser Heat Recovery (발전소 복수기 배열회수 해양온도차 발전설비 적용타당성 검토)

  • Jung, Hoon;Kim, Kyung-Yol;Heo, Gyun-Young
    • New & Renewable Energy
    • /
    • v.6 no.3
    • /
    • pp.22-29
    • /
    • 2010
  • The concept of Ocean Thermal Energy Conversion (OTEC) is simple and various types of OTEC have been proposed and tried. However the location of OTEC is limited because OTEC requires $20^{\circ}C$ of temperature difference as a minimum, so most of OTEC plants were constructed and experimented in tropical oceans. To solve this we proposed the modified OTEC which uses condenser discharged thermal energy of existing fossil or nuclear power plants. We call this system CTEC (Condenser Thermal Energy Conversion) as this system directly uses $32^{\circ}C$ partially saturated steam in condenser instead of $20{\sim}25^{\circ}C$ surface sea water as heat source. Increased temperature difference can improve thermal efficiency of Rankine cycle, but CTEC should be located near existing plant condenser and the length of cold water pipe between CTEC and deep cold sea water also increase. So friction loss also increases. Calculated result shows the change of efficiency, pumping power, net power and other parameters of modeled 7.9 MW CTEC at given condition. The calculated efficiency of CTEC is little larger than that of typical OTEC as expected. By proper location and optimization, CTEC could be considered another competitive renewable energy system.