• Title/Summary/Keyword: 냉매순환량

Search Result 16, Processing Time 0.021 seconds

Influence of Charging Amounts on the Cooling Performance of $CO_2/Propane$ Mixtures and Concentration Shift Behavior (이산화탄소/프로판 혼합냉매의 냉방성능에 대한 충전량의 영향 및 순환성분비 변화 특성)

  • Kim, Ju-Hyok;Hwang, Yun-Wook;Kim, Min-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.11
    • /
    • pp.851-858
    • /
    • 2006
  • [ $CO_2$ ] and propane mixtures, which are environmentally benign, nontoxic, low in price, and compatible with materials and lubricants, were considered as promising alternative refrigerants. A fully instrumented air-conditioning system was developed for a precise performance evaluation of pure $CO_2$ and $CO_2/propane$ mixtures. In this paper, the effect of the charging amount and circulation concentration on the cooling performance of the system using $CO_2$ and propane mixtures was tested and discussed. Pure $CO_2$ and 85/15, 75/25 and 60/40 binary blends by the charged mass percentage of $CO_2/propane$ were selected as working fluids. An optimum charging amount was proposed as a parameter instead of the degree of subcooling, which can not be well defined in the transcritical cycle, to properly compare the performance between the transcritical and subcritical cycles.

A Study on the Drop-in Tests of a Small Ice Maker Using R-404A Replacements R-448A and R-449A (소형 제빙기에 사용되는 R-404A 대체 R-448A, R-449A의 Drop-in Test에 대한 연구)

  • Lee, Byungmoo;Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.21-27
    • /
    • 2019
  • R-404A, which is used widely in small-scale ice makers, is scheduled to be phased out because of its high global warming potential. In this study, drop-in tests were conducted using R-448A and R-449A, which replace R-404A, to modify the outdoor air and supply water temperatures. The results showed that the daily ice production rate of R-404A was 5.3% higher than that of R-448A and 4.2% higher than that of R-449A. This was attributed to the larger vapor density of R-404A, which resulted in a larger mass flow rate in the system. Between R-448A and R-449A, R-448A yielded a larger amount of ice at low air and water temperatures, whereas R-449A yielded a larger amount of ice at high air and water temperatures. The daily power consumption of R-404A was approximately 10% larger than those of R-448A and R-449A. The resulting COPs of R-448A and R-449A was similar, only 3.0% larger than that of R-404A. The literature survey showed that the condensation or evaporation data of R-448A or R-449A are very limited, and research on this issue is recommended.

The Condensation Heat Transfer of R-22 and R-410A in an Inner Diameter Tube of 1.77 mm (내경 1.77 mm관내 R-22와 R-410A의 응축열전달)

  • Son, Chang-Hyo;Roh, Geon-Sang
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.1
    • /
    • pp.48-53
    • /
    • 2008
  • The condensation heat transfer coefficients of R-22 and R-410A in a small diameter tube were investigated. The main components of the refrigerant loop consist of a receiver, a variable-speed pump, a mass flowmeter, an evaporator (preheater), and a condenser (test section). The test section consists of smooth, horizontal copper tube of 3.38 mm outer diameter and 1.77 mm inner diameter. The refrigerant mass fluxes varied from 450 to $1050\;kg/(m^2s)$ and the average inlet and outlet qualities were 0.05 and 0.95. The main results were summarized as follows : the condensation heat transfer coefficient also increases with increasing mass flux and quality. The condensation heat transfer coefficient of R-410A was slightly higher than that of R-22. Most of correlations proposed in the large diameter tube showed significant deviations with experimental data except for the ranges of low quality and low mass flux.

  • PDF

Performance Evaluation of Rough Rice Low Temperature Drying Using Heat Pump (열펌프를 이용한 벼의 저온건조성능평가)

  • Kim, Hoon;Han, Jae-Woong
    • Food Engineering Progress
    • /
    • v.13 no.4
    • /
    • pp.308-313
    • /
    • 2009
  • This study was conducted to design and fabricate a heat pump that can produce some weather conditions similar to those of the dry season of the rough rice in Korea, and to investigate basic performances of the apparatus. During the drying test, the amount of energy consumption and drying characteristics were measured at four different temperature levels ranging between 20$^{\circ}C$ and 50${^{\circ}C}$. In the psychrometric chart, the freezing capacity and refrigerant circulation ratio of the heat pump were 173 kJ/kg and 49.6 kg/hr, respectively. Therefore, coefficient of performance was 5.5, which was superior to that of refrigerant R-22 (4.0) in standard refrigeration cycle. In addition, the time to reach target drying temperature (30${^{\circ}C}$) and relative humidity (40%) were 6 minutes and 7 minutes, respectively. Temperature differences between the drying temperature and the rice were 1.5${^{\circ}C}$ and 8.5${^{\circ}C}$ at the drying temperatures of 21.9${^{\circ}C}$ and 48.7${^{\circ}C}$, respectively. This result demonstrated that the increased temperature of the rice in the drying section decreased sufficiently in the tempering section. At the drying temperatures of 21.9, 30.7 38.8, and 48.7${^{\circ}C}$, drying rates were 0.29, 0.61, 0.85, and 1.26%/hr, respectively, which were similar to those of commercial dryer. In addition, the amounts of energy consumption were 325, 667, 692, and 776 kJ/kg, respectively. These results showed that this dryer saved up to 86% of energy consumption compared with the commercial dryer, which uses 4,000-5,000 kJ/kg of fossil fuel.

Estimation of Domestic Greenhouse Gas Emission of Refrigeration and Air Conditioning Sector adapting 2006 IPCC GL Tier 2b Method (국내 냉동 및 냉방부문 온실가스 배출량 산정 - 2006 IPCC GL Tier 2b 적용 -)

  • Shin, Myung-Hwan;Lyu, Young-Sook;Seo, Kyoung-Ae;Lee, Sue-Been;Lim, Cheolsoo;Lee, Sukjo
    • Journal of Climate Change Research
    • /
    • v.3 no.2
    • /
    • pp.117-128
    • /
    • 2012
  • The Government of South Korea has continued its effort to fixate virtuous circle of economic growth and climate change response to cope with international demands and pressure to commitment for greenhouse gas reduction effectively. Nationally, Korean Government has established "Enforcement of the Framework Act on Low carbon, Green Growth"(2010. 4. 13) to implement national mid-term GHG mitigation goal(30% reduction by 2020 compare to BAU), which established the foundation for phased GHG mitigation by setting up the sectoral and industrial goal, adopting GHG and Energy Target Management System. Also, follow-up measures are taken such as planning and control of mid-term and short-term mitigation target by detailed analysis of potential mitigation of sector and industry, building up the infrastructure for periodic and systematic analysis of target management. Likewise, it is required to establish more accurate, reliable and detailed sectoral GHG inventory for successfully establishment and implement the frame act. In comparison to the $CO_2$ emission, Especially fluorinated greenhouse gases (HFCs, PFCs, $SF_6$) are lacking research to build the greenhouse gas inventories to identify emissions sources and collection of the applicable collection activities data. In this study, with the refrigeration and air conditioning sector being used to fluorine refrigerant(HFCs) as the center, greenhouse gas emission estimation methodology for evaluating the feasibility of using this methodology look over and mobile air conditioning, fixed air conditioning, household refrigeration equipment, commercial refrigeration equipment for the greenhouse gas emissions were calculated. First look at in terms of methodology, refrigeration and air conditioning sector GHG emissions in developing country-specific emission factors and activity data of the industrial sector the construction of the DB is not enough, it's 2006 IPCC Guidelines Tier 2a (emission factor approach) rather than the Tier 2b (mass balance approach) deems appropriate, and each detail by process, sectoral activity data more accurate, if DB is built Tier 2a (emission factor approach) can be applied will also be judged. Refrigeration and air conditioning sector in 2009 due to the use of refrigerant greenhouse gas emissions ($CO_2eq.$) assessment results, portable air conditioner 1,974,646 ton to year, fixed-mount air conditioner 1,011,754 ton to year, household refrigeration unit 4,396 ton to year, commercial refrigeration equipment 1,263 ton to year was estimated to total 2,992,037 tons.

An Experimental Study on Radiation/Convection Hybrid Air-Conditioner (복사-대류 겸용 하이브리드 냉방기에 대한 실험 연구)

  • Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.288-296
    • /
    • 2019
  • Radiation cooling has used ceilings or floors as cooling surfaces. In such cases, to avoid moisture condensation on the surface, the surface temperature needs be higher than the dew point temperature or an additional dehumidifier is added. In this study, with a goal for residential application, intentional moisture condensation on the cooling surface was attempted, which increased the cooling capacity and improved the indoor comfortness. This method included two separate refrigeration cycles - convection-type dehumidifying cycle and the panel cooling cycle. Test results on the panel cooling cycle showed that, at the standard outdoor ($35^{\circ}C/24^{\circ}C$) and indoor ($27^{\circ}C/19.5^{\circ}C$) condition, the refrigerant flow rate was 8.8 kg/h, condensation temperature was $51^{\circ}C$, evaporation temperature was $8.8^{\circ}C$, cooling capacity was 376 W and COP was 1.75. Furthermore, the panel temperature was uniform within $1^{\circ}C$ (between $13^{\circ}C$ and $14^{\circ}C$). As the relative humidity decreased, the cooling capacity decreased. However, the power consumption remained approximately constant. In the convection-type dehumidification cycle, the refrigerant flow rate was 21.1 kg/h, condensation temperature was $61^{\circ}C$, evaporation temperature was $5.0^{\circ}C$, cooling capacity was 949 W and COP was 2.11 at the standard air condition. When both the radiation panel cooling and the dehumidification cycle operated simultaneously, the cooling capacity of the radiation panel cycle was 333 W and that of the dehumidification cycle was 894 W, and the COP was 1.89. As the fan flow rate decreased, both the cooling capacity of the radiation panel and the dehumidification cycle decreased, with that of the dehumidification cycle decreasing at a higher rate. Finally, a possible control logic depending on the change of the cooling load was proposed based on the results of the present study.