• Title/Summary/Keyword: 냉동시스템

Search Result 424, Processing Time 0.023 seconds

An Electronic Commerce System Using GIS for frozen Marine Products (GIS를 이용한 냉동수산물 전자상거래 시스템)

  • 박철웅;박계화;장문석
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.10a
    • /
    • pp.360-363
    • /
    • 2000
  • This Paper propose the system which introduces GIS user interface method to existing electronic commerce. While existing system provided text-oriented information, our system can provide complex information cleary at a glance using character, picture and location data.

  • PDF

극저온 냉동 시스템의 기본원리

  • 이금배;백일현
    • Journal of the KSME
    • /
    • v.30 no.5
    • /
    • pp.460-469
    • /
    • 1990
  • 극저온 냉동기술은 최첨단 산업에서 여러 방면에 걸쳐 실용화되고 있으며 상업화도 많이 되고 있다. 또한 앞으로의 응용범위는 더욱 확대될 전망이기 때문에 미래에 첨단 및 우주시대를 맞 이하여 국가주도 아래 적극적으로 육성 발전시키는 것이 절대적으로 필요하다고 본다. 본 내 용은 1989년에 과학기술처의 지원 하에 수행한 중점과제인 극한기술 분야 중 극저온 기술분야에 속하는 특정과제 "SQUID 냉각장치용 극저온 시스템 개발연구"의 일부분이다.t;의 일부분이다.

  • PDF

Performance analysis of a R744 and R404A cascade refrigeration system with internal heat exchanger (내부 열교환기 부착 R744-R404A용 캐스케이드 냉동시스템의 성능 분석)

  • Oh, H.K.;Son, C.H.
    • Journal of Power System Engineering
    • /
    • v.16 no.1
    • /
    • pp.38-43
    • /
    • 2012
  • This paper describes an analysis on performance of R744-R404A cascade refrigeration system with internal heat exchanger to optimize the design for the operating parameters of the system. The operating parameters considered in this study include subcooling and superheating degree, internal heat exchanger and compression efficiency, evaporating and condensing temperature in the R744 low- and R404A high-temperature cycle and temperature difference of cascade heat exchanger. The main results are summarized as follows : COP of cascade refrigeration system increases with the increasing of compression efficiency, but decreases with the increasing temperature difference of cascade heat exchanger. Also, the COP increases with the increasing of internal heat exchanger efficiency in high-temperature cycle, but decreases with that in low-temperature cycle. Therefore, internal heat exchanger efficiency, compressor efficiency and temperature difference of cascade heat exchanger on R744-R404A cascade refrigeration system have an effect on the COP of this system.

Performance Analysis of Refrigeration System Using the CFC-Alternative and Scroll Compressor (CFC-대체냉매와 스크롤압축기를 사용한 냉동시스템 성능해석)

  • Pak, H.Y.;Park, K.W.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.3
    • /
    • pp.366-381
    • /
    • 1995
  • A performance analysis of refrigeration system using the HFC-134a and scroll compressor is performed numerically. The refrigeration system mainly consists of various standard components such as heat exchanger, compressor, and expansion device. The model for heat exchanger performance is based on a tube-by-tube method which is analyzed separately by considering the cross-flow heat transfer with the outdoor air flow and pressure drop. Compressor is used the scroll-type compressor which has many merits such as high efficiency, low noise and vibration, and small in size. Short-tube is included as an expansion device. Vapour and liquid line are also considered for the performance analysis of refrigeration system. Using the modeling of various components of refrigeration system, a performance comparison of CFC-12 and HFC-134a is performed numerically for the various outdoor air temperature and various values of short-tube diameter. As the results of this study, the refrigeration system performance decreases as the outdoor air temperature increases. And the optimum short-tube diameter based on COP is 1.37mm for this system.

  • PDF

Performance Analysis of R404A Refrigeration System with Internal Heat Exchanger Using R744 as a Secondary Refrigerant (R744를 2차 냉매로 사용하는 내부열교환기 부착 R404A 냉동시스템의 성능 분석)

  • Oh, Hoo-Kyu;Son, Chang-Hyo;Yi, Wen-Bin;Jeon, Min-Ju
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.10
    • /
    • pp.548-554
    • /
    • 2013
  • A thermodynamic analysis of the R404A refrigeration system with an internal heat exchanger using R744 as a secondary refrigerant is presented in this paper to optimize the design for operating parameters of the system. The main results are summarized as follows: The COP increases with increasing subcooling and superheating degree of R404A, internal heat exchanger and compression efficiency of the R404A cycle and evaporating temperature of the R744 cycle and decreasing temperature difference of the cascade heat exchanger and condensing temperature of the R404A cycle. The mass flow ratio decreases with increasing evaporating temperature of the R744 cycle and internal heat exchanger efficiency of the R404A cycle and decreasing subcooling and superheating degree of the R744 cycle, temperature difference of the cascade heat exchanger and condensing temperature of the R404A cycle.

Performance Characteristics of a Cascade Refrigeration System with Internal Heat Exchanger using Carbon Dioxide (R744) and Propane (R290) (내부 열교환기 부착 $CO_2-C_3H_8$용 캐스케이드 냉동시스템의 성능 특성)

  • Son, Chang-Hyo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.6
    • /
    • pp.526-533
    • /
    • 2009
  • In this paper, cycle performance analysis of $CO_2-C_3H_8$ (R744-R290) cascade refrigeration system with internal heat exchanger is presented to offer the basic design data for the operating parameters of the system. The operating parameters considered in this study include subcooling and superheating degree and gas cooling pressure and evaporating temperature in the propane (R290) low temperature cycle and the carbon dioxide (R744) high temperature cycle. The main results were summarized as follows : The COP of cascade refrigeration system of $CO_2-C_3H_8$ (R744-R290) increases with the increasing subcooling degree, but decreases with the increasing superheating degree. The COP of cascade refrigeration system increases with the increasing evaporating temperature, but decreases with the increasing gas cooling pressure. Therefore, superheating and subcooling degree, compressor efficiency, evaporating temperature and gas cooling pressure of $CO_2-C_3H_8$ (R744-R290) cascade refrigeration system have an effect on the COP of this system.

Performance Simulation of a R744-R717 Cascade Refrigeration System According to Operating Conditions (R744-R717 캐스케이드 냉동시스템에서 운전조건 변화에 따른 성능 해석)

  • Ryu, Jiho;Cho, Honghyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.10
    • /
    • pp.497-505
    • /
    • 2015
  • The evaporating temperature range required for the low temperature freezing system is from $-50^{\circ}C$ to $-30^{\circ}C$. Since it is difficult to keep the required capacity in a cabinet, it is advantageous to design the system using a cascade refrigeration system. Use of carbon dioxide and ammonia would be advantageous since ammonia is an environment-friendly working fluid and has a high capacity for performance improvement. To investigate the performance characteristics of the R744-R717 cascade refrigeration system, a theoretical model was developed and performance was analyzed according to cascade heat exchanger operating temperature. The optimal cascade R744 condensing temperature was $-5^{\circ}C$, and maximum COP was 1.13 when the temperature difference of the cascade heat exchanger was $5^{\circ}C$. In addition, the total system COP increased by 1.17 when the cascade temperature gap was $3^{\circ}C$ at the middle temperature of $-7.5^{\circ}C$.

Optimal PI Controller Design for Refrigeration System Considering Disturbance (외란을 고려한 냉동시스템의 최적 PI 제어기 설계)

  • Jeong, Seok-Kwon;Hong, Ki-Hak
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.2
    • /
    • pp.85-93
    • /
    • 2013
  • The proportional plus integral(PI) feedback control manner has been used in many general industrial fields such as refrigeration system because of its simple design process and favorable control performance. This paper deals with optimized PI controller design of the refrigeration system based on evaluation functions such as integrated absolute error(IAE). The suggested optimal PI gains can be easily calculated by a simple program and the optimal controllability satisfying the evaluation function can be assured. Furthermore, at the initial step of controller design, the suggested optimal gain is able to reflect some noise disturbances caused by an inverter which drives variable speed compressors. The validity of the suggested optimal gain is investigated by some simulations and experiments to verify its efficiency. From the results of comparing control performance between the optimal PI controller based on the evaluation function and the PI controller designed by the Matlab tuner which was known as the most popular gain tuner, the optimal PI controller showed more desirable control performance especially in transient responses.

A Study on the Micro Vapor Compressor based on Microfabrication Process for the Application to the Micro Miniature Refrigeration System (초소형 냉동시스템의 응용을 위한 마이크로 증기 압축기의 개발 및 성능에 관한 연구)

  • Yoon, Jae-Sung;Choi, Jong-Won;Kim, Min-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.477-482
    • /
    • 2006
  • In this study, a micro vapor compressor has been designed, fabricated and tested. The micro vapor compressor was made of silicon substrates and fabricated by micromachining process. The compressor is driven by a piezoelectric actuator which is widely used in microfluidic systems because of its strong force and rapid response. The actuator is a bimorph structure which consists of a silicon membrane and a piezoelectric ceramic film. A simulation work was conducted on the performance characteristics of the compressor. The simulation investigated the flow rate variation under various back pressure conditions. Experimental works were carried out on the operation of a compressor and the test results were compared with the simulation results.

  • PDF

Temperature Measurement System for Refrigerated Vehicle (냉동차량을 위한 온도 측정 시스템)

  • Lim, Yong-Jin;Kim, Jung-Hwan;Lim, Joon-hong
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.159-163
    • /
    • 2019
  • The food service industry has been grown due to improvement of living standards. In addition, the demand for frozen food delivery is increasing day by day at online/offline and the refrigerated vehicles are used in most of these food distributions. One of the most important factors in a refrigerated car is to measure the temperature accurately. Conventional temperature recording systems are generally connected directly to temperature sensor modules. Since the temperature data are transmitted to the temperature recorder by using the electric wire, there is a disadvantage that the resistance error must be compensated according to the cable length. In this paper, we propose a method to correct errors due to cable resistance using digital processing and CAN (Controller Area Network) communication. We use PT-1000 platinum sensor to increase the accuracy of the temperature measurement.