• Title/Summary/Keyword: 냉기덕트

Search Result 4, Processing Time 0.017 seconds

PIV Analysis of the Flow Inside a Home Refrigerator and the Design of a Higher Efficiency Cooling Duct (PIV 계측을 이용한 가정용 냉장고의 냉기 유동특성 파악과 고효율 냉기 유로 설계)

  • Choi, Jay-Ho;Cho, Sung-Ho;Nam, Young-Sok;Lee, In-Seop
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.405-409
    • /
    • 2001
  • An experimental analysis of the flow inside the refrigeration compartment of a home refrigerator was conducted in order to achieve better performances in terms of uniform temperature distribution and cooling speed. 2D PIV and stereoscopic PIV were used for the experiments on an actual-size refrigerator at operating conditions. Two CCD cameras were employed for a wider field of view in the measurement of the shelf, and stereoscopic PIV was used to measure the three velocity components at the various cooling duct outlets and the mean velocity fields were area-integrated to calculate the flow-rates. 50 to 100 instantaneous velocity fields were time averaged for the mean velocity fields. With the result of this analysis, a new cooling duct system was developed, with the refrigerator's cooling performance increasing 11% in terms of cooling speed, and 25% in temperature uniformity.

  • PDF

Numerical Analysis of Fluid Flow in Freezer Duct of Refrigerator (냉장고의 냉동실내 냉기 덕트 내부의 유동해석)

  • 엄윤섭;부정숙
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.4
    • /
    • pp.509-514
    • /
    • 2000
  • A numerical study has been performed to design duct parameters in the freezer of a domestic refrigerator. The visualization results of FDM analysis using the standard k-$\varepsilon$ model with inlet boundary conditions modelled in this paper show good agreements with the experimental ones in prediction overall flow characteristics. Dominant vortex flows are found in the left upper and right lower corners, while there exists large turbulent kinetic energy around the fan and right upper side of the fan. It, in turn, has effects on the performance and noise. It is recommended to locate the outlet far away from the fan in order to reduce the noise level.

  • PDF

Development of a Flow-duct for Uniform Flow of Chilly Air in a Refrigerator (냉장고의 균일 냉기유동을 위한 유동구조 개선에 관한 연구)

  • Yu, Jae-Hyun;Kim, Pan-Gun;Park, Sang-Hu;Bae, Won-Byong;Kim, Ju-Wan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.9
    • /
    • pp.995-1002
    • /
    • 2012
  • In a refrigerator, many food boxes are stored, so the flow of chilly air has very complicate stream paths inside the room of a refrigerator. Moreover, on some occasions, there is no flow of chilly air in a space due to blocking flow paths by food boxes, which is an important issue to be settled for improving the ability of food storage with fresh states. One of methods to solve this problem is to redesign the flow-pattern of chilly air to be uniform flow inside room, if possible. In this work, we have tried to design the duct-structure for the uniform flow of a chilly air using a FE-analysis method. And we conducted real commercial tests using a refrigerator having the redesigned duct. The results showed that good agreements with general requirements.

Improvement in flow and noise performance of backward centrifugal fan by redesigning airfoil geometry (익형 형상 재설계를 통한 후향익 원심팬의 유동 및 소음성능 개선)

  • Jung, Minseung;Choi, Jinho;Ryu, Seo-Yoon;Cheong, Cheolung;Kim, Tae-hoon;Koo, Junhyo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.6
    • /
    • pp.555-565
    • /
    • 2021
  • The goal of this study is to improve flow and noise performances of existing backward-curved blade centrifugal fan system used for circulating cold air in a refrigerator freezer by optimally designing airfoil shape. The unique characteristics of the system is to drive cold airflow with two volute tongues in combination with duct system in a back side of a refrigerator without scroll housing generally used in a typical centrifugal fan system. First, flow and noise performances of existing fan system were evaluated experimentally. A P-Q curve was obtained using a fan performance tester in the flow experiment, and noise spectrum was measured in an anechoic chamber in the noise experiment. Then, flow characteristics were numerically analyzed by solving the three-dimensional unsteady Navier-Stokes equations and noise analysis was performed by solving the Ffowcs Williams and Hawkins equation with input from the flow simulation results. The validity of numerical results was confirmed by comparing them with the measured ones. Based on the verified numerical method, blade inlet and outlet angles were optimized for maximum flow rate using the two-factor central composite design of the response surface method. Finally, the flow and noise performances of a prototype manufactured with the optimum design were experimentally evaluated, which showed the improvement in flow and noise performance.