• Title/Summary/Keyword: 냉간단조법

Search Result 43, Processing Time 0.022 seconds

FE techniques for the accurate prediction of part dimension in cold forging (냉간 단조품의 치수 정밀 예측을 위한 유한요소해석 기술)

  • 이영선;권용남;이정환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.29-33
    • /
    • 2003
  • The improvement of dimensional accuracy for forged part is one of major goals in cold forging industry. There are many problems in controlling the dimension only by the trial-and-error, especially for a precision forged gear. A FEM analysis has been used in developing the forging technology. However, FE techniques have to be reconfirmed for predicting accurately the dimension of forged part. In this study, the effects of elastic characteristics and temperature changes are investigated by the comparisons between experimental and FEA in cold forging. When FE models related with elastic characteristics are considered as reality, FE results could predict the part dimension within the range of 10 $\mu\textrm{m}$. And if temperature also is considered really, the predicted dimensions are well coincided with the experimental down to about 5$\mu\textrm{m}$.

  • PDF

Dimensional changes of workpiece and die in cold upsetting by the closed-die at each stage (냉간 밀폐 업세팅시 금형과 단조소재의 성형 단계별 치수 변화)

  • 이영선;권용남;천세환;이정환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.38-43
    • /
    • 2003
  • The dimensions of die and workpiece are changed continuously during loading, unloading, and ejecting stage. Finally, to predict precisely the dimension of forged part and get the die dimension for the net-shape components, the analysis of die and workpiece should be evaluated from the loading to ejecting. Therefore, the experimental and FEM analysis are peformed to investigate the elastic characteristics at workpiece and die in the closed-die upsetting for ferrous material. FE techniques are proposed to consider the unloading and ejecting stages and estimate more precisely the dimension of forged part and die. The dimensional changes for the workpiece were evaluated quantatively during loading, unloading, and ejecting stages. The strains measured by the strain gages were compared with the estimated values by the FEM.

  • PDF

FEM Analyses of Hot Forging and Cold Sizing of a Spur Gear (스퍼어기어의 열간단조와 냉간사이징의 유한요소해석)

  • 박종진;이정환
    • Transactions of Materials Processing
    • /
    • v.5 no.2
    • /
    • pp.105-114
    • /
    • 1996
  • Recently, precision forging techniques are applied to manufacture spur gears. Compared to conventional machining, they produce parts of better mechanical properties and less residual stresses with a much higher production rate. In the present investigation a rigid-plastic three dimensional finite element method was applied to analyze hot forging and cold sizing of a spur gear by closed dies. The involute curve of a tooth profile was approximated by a circle close to the curve. Results of the analyses make it possible to predict local strengths of the gear die failure and an appropriate preform for cold sizing. It was found that the preform for cold sizing. It was found that the preform for the cold sizing is the most important because it determines whether the gears especially teeth can be successfully formed.

  • PDF

Design of Cold Forging Process of Micro Screw for Mobile Devices (모바일 기기용 초소형 나사의 냉간 단조 공정 설계)

  • Choi, Du-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.3692-3697
    • /
    • 2015
  • A screw is a type of fastener characterized by a helical ridge known as thread. The demands for screws with the miniaturization and weight reduction are increasing for the trend of small size of mobile devices. The successful designs of mold and process are very important to obtain screws with good mechanical properties and high precision. In this study, the design of cold forging process of micro screw was carried out by using finite element method. In particular, in order to investigate the effects of die geometries and friction, design of experiment method was adopted and it was revealed that the friction was the dominant factor of folding defects. From these results, the design of die was modified and experiments were carried out with the modified die. From the experimental results, it was found that the folding defects disappeared.

A Study on the Elastic Deformation of Forged Bevel Gears and Die (단조 베벨 기어의 탄성회복과 금형변형에 관한 연구)

  • 김명곤;강우진;조종래;이정환;배원병
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.34-37
    • /
    • 2003
  • Cold forging has several advantages as compared with conventional forming by cutting process. In this study, the elastic deformations of straight bevel gear and die induced by cold forging process are investigated to use 3D-Scanner. So we could estimate the total elastic deformation as comparing between forged bevel gears and die. And finite element analysis has been performed to predict the elastic deformation, each of cold forged bevel gear and die. The predicted values are compared with the experimental values and as a result they are well agreed with experimental data.

  • PDF

Elastic Finite Element Analysis of the Cold Forging Dies Prestressed by Shrinkage Rings (보강링에 의하여 예압된 냉간단조금형구조의 탄성유한요소 해석)

  • Seo, Dae-Yun;Lee, Min-Cheol;Jeon, Man-Su
    • Transactions of Materials Processing
    • /
    • v.7 no.4
    • /
    • pp.347-353
    • /
    • 1998
  • A new approach of elastic finite element to die stress analysis in forging is presented in this paper. The die set analysis problem is formulated by considering contact problems under both mechanical and thermal loads. In the approach, amount of shrink fit is controlled by thermal load i.e., temperature difference between die insert and shrink fits. The loading conditions are extracted automatically from a forging simulator. The predicted solution is compared with analytical one and it has been shown that the predicted results are in excellent agreement with the analytical ones. An application example is given, which was found in a cold forging company.

  • PDF

Finite Element Analysis of a Cold forging Process Having a Floating Die (부유금형을 가진 냉간단조 공정의 유한요소해석)

  • 전만수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.103-107
    • /
    • 1999
  • In this paper, a computer simulation technique for the forging process having a floating die is presented. The penalty rigid-plastic finite element method is employed together with an iteratively force-balancing method, in which the convergence is achieved when the floating die part is in force equilibrium within the user-specified tolerance. The force balance is controled by adjusting the velocity of the floating die in an automatic manner. An application example of a three-stage cold forging process is given.

  • PDF

A Study to improve dimensional accuracy of forged gear (단조기어 정밀도 향상을 위한 연구)

  • Lee, Y.S.;Jung, T.W.;Lee, J.H.;Cho, J.R.;Moon, Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.129-134
    • /
    • 2009
  • The dimension of forged part is different from that of die. Therefore, a more precise die dimension is necessarys to produce the precise part, considering the dimensional changes from forging die to final part. In this paper, both experimental and FEM analysis are performed to investigate the effect of several features including die dimension at each forging step and heat-treatment on final part accuracy in the closed-die upsetting. The dimension of forged part is checked at each stage as machined die, cold forged, and post-heat-treatment steps. The elastic characteristics and thermal influences on forging stage are analyzed numerically by the DEFORM-$2D^{TM}$. The effect of residual stress after heat-treatment on forged part could be considered successfully by using DEFOAM-$HT^{TM}$.

  • PDF

Forward Projection Using Fuzzy Logic in Axisymmetric Finite Element Simulation for Cold Forging (축대칭 냉간단조의 유한요소해석에서 퍼지로직을 이용한 전방투사법)

  • 정낙면;이낙규;양동열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.8
    • /
    • pp.1468-1484
    • /
    • 1992
  • In the present paper forward projection is proposed as a new approach to determine the preform shape in rib-web type forging. In the forward projection technique an optimal billet is determined by applying some mathematical relationship between geometrical trials in the initial billet shape and the final products. In forward projection a volume difference between the desired product shape and the final computed shape obtained by the rigid-plastic finite element method is used as a measure of incomplete filling of working material in the die. At first linear inter-/extrapolation is employed to find a proper trial shape for the initial billet and the method is successfully applied to some cases of different aspect ratios of the initial billet. However, when the initial guesses are not sufficiently near the optimal value linear inter-/extrapolation does not render complete die filling. For more general application, a fuzzy system is used in the forward projection technique in order to determine the initial billet shape for rib-web type forging. It has been thus shown that the fuzzy system is more reliable for the preform design in the rib-web type forging process.

The Prediction of Elastic Deformation of Forging Die to Improve Dimensional Accuracy (단조품의 정밀도 향상을 위한 금형의 탄성변형 예측)

  • Choe, Jong-Ung;Lee, Yeong-Seon;Lee, Jeong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2610-2618
    • /
    • 2000
  • In this paper, the elastic deformation of cold forging die has been investigated to improve the accuracy of forged parts with FEM analysis and experiments using the strain gages. In the finite element analysis, two types of analysis are used to predict elastic deformation of die. The one is that dies are considered to be elastic body from initial stage to final one, and the other is that the dies are considered to be rigid body during forging simulation and then considered to be elastic body at elastic analysis. Considering the results of analysis and experiments, it is likely that the analytical results are in good agreement with experimental inspections. The method using the elastic assumption of die relatively takes a lot of time to simulate the forming operation. However, It is better that using an elastic die to predict not only the shape of product but also filling of die cavity.