• Title/Summary/Keyword: 냉간단조금형

Search Result 92, Processing Time 0.024 seconds

Design Methodology of Preform for Reducing Tool Wear in Cold Forging (냉간 단조 금형의 마멸 감소를 위한 예비성형체 설계방법)

  • 이진호;김태형;김병민
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.4
    • /
    • pp.118-124
    • /
    • 1998
  • The die wear is one of the main factors affecting die accuracy and tool lifetime. It is desired to reduce die wear by developing simulation method to predict wear based on process variables, and then optimizing the process. Therefore, this paper describes methodology of preform design for minimizing wear of finisher die in multi-stage cold forging processes. The finite element method is combined with the routine of wear prediction. The cold forging process is analyzed using developed simulation method. In order to obtain preform to minimize die wear, the Flexible Polyhedron Search(FPS) algorithm is used. The optimal preform shape is found from iterative deformation analysis and wear calculation.

  • PDF

A Study on the Machining Characteristics of Tool Material for Cold Forging (냉간단조용 금형강의 절삭특성에 관한 연구)

  • Choi, W.S.;Nam, J.H.;Kang, C.W.;Kin, W.G.;Lee, I.;Kwon, J.R.;Park, S.Y.;Mun, H.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.135-138
    • /
    • 2009
  • In this study we investigate the machining characteristics of tool material for cold forging by using the machining center. The test was in the SKD62 cold forging material by 2-edge endmill with cutting fluid. The coating conditions are depth of cut 1,2,3mm. WC-endmill, federate 20mm/min, cutting velocity 20m/min. The surface roughness increase as the depth of cut increase. Also cutting force increase whiles the depth of cut increase.

  • PDF

Dimensional changes of workpiece and die in cold upsetting by the closed-die at each stage (냉간 밀폐 업세팅시 금형과 단조소재의 성형 단계별 치수 변화)

  • 이영선;권용남;천세환;이정환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.38-43
    • /
    • 2003
  • The dimensions of die and workpiece are changed continuously during loading, unloading, and ejecting stage. Finally, to predict precisely the dimension of forged part and get the die dimension for the net-shape components, the analysis of die and workpiece should be evaluated from the loading to ejecting. Therefore, the experimental and FEM analysis are peformed to investigate the elastic characteristics at workpiece and die in the closed-die upsetting for ferrous material. FE techniques are proposed to consider the unloading and ejecting stages and estimate more precisely the dimension of forged part and die. The dimensional changes for the workpiece were evaluated quantatively during loading, unloading, and ejecting stages. The strains measured by the strain gages were compared with the estimated values by the FEM.

  • PDF

A Study on the Elastic Deformation of Forged Bevel Gears and Die (단조 베벨 기어의 탄성회복과 금형변형에 관한 연구)

  • 김명곤;강우진;조종래;이정환;배원병
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.34-37
    • /
    • 2003
  • Cold forging has several advantages as compared with conventional forming by cutting process. In this study, the elastic deformations of straight bevel gear and die induced by cold forging process are investigated to use 3D-Scanner. So we could estimate the total elastic deformation as comparing between forged bevel gears and die. And finite element analysis has been performed to predict the elastic deformation, each of cold forged bevel gear and die. The predicted values are compared with the experimental values and as a result they are well agreed with experimental data.

  • PDF

Elastic Finite Element Analysis of the Cold Forging Dies Prestressed by Shrinkage Rings (보강링에 의하여 예압된 냉간단조금형구조의 탄성유한요소 해석)

  • Seo, Dae-Yun;Lee, Min-Cheol;Jeon, Man-Su
    • Transactions of Materials Processing
    • /
    • v.7 no.4
    • /
    • pp.347-353
    • /
    • 1998
  • A new approach of elastic finite element to die stress analysis in forging is presented in this paper. The die set analysis problem is formulated by considering contact problems under both mechanical and thermal loads. In the approach, amount of shrink fit is controlled by thermal load i.e., temperature difference between die insert and shrink fits. The loading conditions are extracted automatically from a forging simulator. The predicted solution is compared with analytical one and it has been shown that the predicted results are in excellent agreement with the analytical ones. An application example is given, which was found in a cold forging company.

  • PDF

Finite Element Analysis of a Cold forging Process Having a Floating Die (부유금형을 가진 냉간단조 공정의 유한요소해석)

  • 전만수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.103-107
    • /
    • 1999
  • In this paper, a computer simulation technique for the forging process having a floating die is presented. The penalty rigid-plastic finite element method is employed together with an iteratively force-balancing method, in which the convergence is achieved when the floating die part is in force equilibrium within the user-specified tolerance. The force balance is controled by adjusting the velocity of the floating die in an automatic manner. An application example of a three-stage cold forging process is given.

  • PDF

Development of Outer Support Ring using Complex Forging Processes (복합단조 공정을 적용한 Outer Support Ring 개발)

  • Ju, Won Hong;Park, Sung-young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.653-659
    • /
    • 2017
  • In this study, the complex forging process of an outer support ring was developed and the prototype was manufactured. The current process, hot forging and MCT machining, has a disadvantage of excessive material removal rates and longer machining hours. To overcome this disadvantage, a general shape is given through hot forging and the precision is achieved through cold forging. The complex forging process was developed with the minimal machining process. Forging analysis was carried out to design a forging process using the commercial program, Deform-3D. The hot and cold forging processes were set up based on the analyzed result. The mold and prototype were manufactured. Hardness, surface roughness, internal defect, the grain low line of the prototype were evaluated. The results showed no particular problems, and there were no problems in mass production. Using complex forging, the material was reduced by approximately 27 % compared to the process using hot forging and MCT machining. In addition, the production speed was improved 2.15 fold compared to that of hot forging and MCT machining. Through this study, a cost-effective process and mold design technology were established, which is expected to have positive effects on other related automotive parts production.

An Automated CAD System for Press Die Design in Cold Forging of Axisymmetric Parts (축대칭 제품을 위한 프레스 냉간단조 금형의 자동설계 기술)

  • Kim, Jong-Ho;Ryu, Ho-Yeun;Hong, Ki-Gon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.87-94
    • /
    • 1999
  • The automated die design program is developed for cold forging of axisymmetric parts which are mainly produced by forward extrusion, backward extrusion, composite extrusion and upsetting. For this study, firstly classification of forged parts and investigation of die construction type usually employed in forging industry are carried out and the most proper type from several kinds of die construction is proposed as a standardized one. Based on the die design rules summarized in the references such as handbooks, technical papers, monthly journals, etc. the automated die design program was made using AutoLISP language available in AutoCAD software of personal computer. This program interactively runs for only input data, for example, forging process, shape of forged parts, type of punch, split of die insert and design of shrinkage rings and then displays details of drawings necessary to make a forging die. When a variety of forging processes and forged parts are tested to examine the validity of this program, it was confirmed to give good results applicable to the forging die design in press shop.

  • PDF

A Study on the Cold Forging Development of Guide Valve for the Fuel Pressure Regulator (연료 압력 조절기용 가이드 밸브의 냉간 단조 개발에 관한 연구)

  • Song, Seung-Eun;Kwon, Hyuk-Hong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.2
    • /
    • pp.331-336
    • /
    • 2012
  • This study was aimed at the design of the dies for the guide valve for the fuel pressure regulator using the computer simulation to shorten the period of production, on the basis of the process planning which was designed by the field experts. In the computer simulation, 'Deform-3d' and 'Eesy-DieOpt' have been used, which are the commercial process analysis and die design program. Through the process analysis, we could know the propriety of the forming process, the inner pressure of the die and the suitable fitting pressure between the insert and the sleeve which was not showing any positive tangential stresses in the insert. Through the simulation of die design, we could know the number of the stress ring, the diameter ratios, the stresses of the die, the shrink fitting tolerance and temperature in the condition of the already determined maximum outer die diameter of the multi-stage former. The validity of the die design using the computer simulation was analyzed by the experiments and the results were satisfactory. As the results of this study, the new and easy die design system for multi-forging has been developed.