• Title/Summary/Keyword: 내화 피복재

Search Result 38, Processing Time 0.026 seconds

장기자연폭로에 따른 내화뿜칠재의 내화성능에 관한 실험적 검토

  • Kim, Dae-Hoe;Choe, Dong-Ho;Lee, Se-Hyeon
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2013.11a
    • /
    • pp.141-142
    • /
    • 2013
  • 철골건축물은 화재에 취약한 구조로써 내화성능 확보를 위하여 내화피복이 필수적이다. 국내에서 가장 많이 사용되고 있는 철골내화피복재는 내화뿜칠재로 폭 넓게 사용되고 있으나, 기존 제도에서 인정 당시의 내화성능은 확인이 가능하나 시간경과에 따른 내구성저하와 이에 따른 내화성능 저하가 예상된다. 이에 본 연구에서는 실내조건에서 장시간 자연폭로실험을 실시함으로써 내화뿜칠피복재의 시간경과에 따른 내화성능 저하현상을 확인하였다.

  • PDF

A Study of Identification Test Method for Fire Resistive Paint in Near-Infrared Spectroscopy (적외선분광법을 이용한 내화피복재 일치성 평가방법 연구)

  • Cho, Nam-Wook;Jeon, Soo-Min;Kang, Sung-Hun;In, Ki-Ho;Rie, Dong-Ho
    • Fire Science and Engineering
    • /
    • v.24 no.3
    • /
    • pp.20-24
    • /
    • 2010
  • When the fire occurred in building, the fire-resistance-structure has to be constructed to prevent collapse of building and to have a time for evacuation of peoples. because of the features of the fireresistance test is similar with real scale, there is no way to confirm quality of fire-resistive-structure in building construction site. Therefore the purpose of this study, a study by spectroscopic analysis using near-infrared spectroscopy (NIR), is to suggest of useful and scientific testing-methods in building construction site by identification-analysis-study for fire resistive paint.

Fundamental research for identification method of sprayed fire-resistive material by TG-IR (열 중량-적외선 분석기를 이용한 내화 뿜칠재 일치성분석 기초연구)

  • Cho, Nam-Wook;Lee, Dong-Ho
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2010.04a
    • /
    • pp.360-365
    • /
    • 2010
  • 현장에서 내화피복재(내화뿜칠재)의 품질을 확인할 수 있는 간편한 품질방법이 부재하여 열 중량-적외선 분석 장치를 이용하여 내화피복재의 일치성 분석을 시도하였다. 국내의 9종 인정 내화뿜칠재에 대한 열 분해 곡선을 확인 하고, 이때 특정 성분을 측정하였다. 국내 시판 9종의 내화뿜칠재는 $400^{\circ}C$이내에서 무게변화가 15% 정도 감소하다가 $400^{\circ}C$부터 $1200^{\circ}C$까지 무게 변화가 거의 없이 유지되는 특성을 보였다. 이때 초기 열분석으로부터 발생되는 가스에 대한 적외선 스펙트럼의 분석결과로 O-H band 및 $CO_2$가 확인되었다. 하지만 내화성능이 없는 흡음뿜칠재의 경우에는 $400^{\circ}C$부터 $1200^{\circ}C$사이에 무게 중량이 급격하게 변화되는 것을 확인 할 수 있었다. 열중량-적외선 분석 장치를 이용하여 두 재료의 열분해곡선 및 적외선스펙트럼 변화를 측정하였으며, 이 분해 곡선을 통계처리 방식인 PCA (Principal components analysis)통계처리를 통해서 내화뿜칠재의 진위 구분이 가능함을 확인하였다.

  • PDF

Properties of Intumescence Alkali Silicates for Building Fire-Resistant (건축용 내화 재료로서의 포비성 알칼리 규산염의 특성에 관한 연구)

  • Kang, Hyun Ju;Kang, Seung Min;Song, Myong Shin;Kim, Young Sik;Park, Jong Hun
    • Applied Chemistry for Engineering
    • /
    • v.20 no.4
    • /
    • pp.416-422
    • /
    • 2009
  • The buildings constructed with steel structure are coated with certified fire resistive material to resist from fire. All the building materials lose their initial performances as time passes by, so they need some maintenance. The Sprayed Fire Resistive Material (SFRM) also loses its performance and this performance loss of the SFRM is very important because fire resistance of buildings depends on SFRM. So this study was aimed to synthesis of alkali-silicates for SFRM and to evaluate the effect of alkali-silicates, K-silicates, Na-silicates and Li-silicates, by exchange of mole ratios as basic factors, tested solubility, intumescence ratios, thermal analysis, powder X-ray diffraction, fire-resistant and heat-resistant.

Study on the Fire Resistance Performance of the TSC Beam (TSC 합성보의 내화성능에 관한 연구)

  • Kim, Sung Bae;Choi, Seng Kwan;Lee, Chang Nam;Kim, Sang Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.1
    • /
    • pp.113-122
    • /
    • 2006
  • The purpose of this paper is to evaluate the fire resistance of the TSC beam, a composite beam composed of a concrete beam enclosed by steel plates. Since a discrepancy was observed between the structural mechanisms of TSC and typical composite beams, the fire performances of the two beams are likewise believed to be partially dissimilar. In this experiment, small and medium-sized TSC beams were tested under given conditions in the laboratory, with/without one of the most widely used spray-on fire protections in Korea. Furthermore, based on the steel and concrete properties under elevated temperatures that were obtained from Eurocode, temperature development across the section was suggested, analyses. To determine the capacity of a modified plastic section, th e fire performance of the model was also examined.

Study on the Fire Behaviour of Composite Beam with Loading and Unloading (하중재하 영향에 의한 합성보의 화재거동에 관한 연구)

  • Kim, Sung-Bae;Lee, Chang-Nam;Kim, Woo-Chul;Kim, Sang-Seup
    • Fire Science and Engineering
    • /
    • v.23 no.2
    • /
    • pp.27-35
    • /
    • 2009
  • In this study, the fire resistance performance of a simple support composite beam, which was sprayed with fire protection coatings, was evaluated. Primary valuables of the study are loading and unloading, shape of composite beam and metal lath of the web. The thickness of the fire protection coating to the three hour resistance is 40mm, but the fire resistance test was performed with 25mm coatings. The test result showed that TSC composit beams with 25mm fire protection coatings can resist on fire for three hours at the both loading and unloading tests. Average and maximum temperatures were less than $250^{\circ}C$ and $310^{\circ}C$ respectively, compared with the standard temperatures for fire resistance on the loading and unloading tests.

An Experimental Study on the Fireproof Covering Thickness of High Strength Concrete Members with Spray Coating (뿜칠피복재를 사용한 고강도 콘크리트 부재의 내화피복두께에 관한 실험적 연구)

  • Lee, Tae-Gyu
    • Fire Science and Engineering
    • /
    • v.24 no.4
    • /
    • pp.41-46
    • /
    • 2010
  • High strength concrete (HSC) has been mainly used in large SOC structures. HSC have superior property as well as improvement in durability compared with normal strength concrete. In spite of durability of HSC, explosive spalling in concrete front surface near the source of fire occurs serious problem in structural safety. Therefore, this study is concerned with experimentally investigation of fire resistance at high temperature due to fireproof material covering thickness in addition to concrete cover. From the test result, it was appeared that the use of fireproof material results in good performance for fire resistance and spalling prevention, and the optimal fireproof covering thickness is 1~3mm. On the other hand, the temperature was rapidly increased by explosive spalling within 30 minutes and showed very little rise caused by evaporation heat after then. It was also found that the void channel was remained at high temperature as PP fiber melts at about $200^{\circ}C$, and the pore pressure in concrete was decreased.