• Title/Summary/Keyword: 내화재료

Search Result 230, Processing Time 0.021 seconds

Development and Performance of Cementitious Materials for Fire Resistance of Tunnel (터널 내화용 시멘트계 재료의 개발 및 성능 평가)

  • Won, Jong Pil;Choi, Seok Won;Park, Chan Gi;Park, Hae Kyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4C
    • /
    • pp.265-273
    • /
    • 2006
  • This study aims at evaluation of the fire resistance performance of cementitious materials for fire protection of tunnel. For this purpose, the research procedure was divided into three parts. First, base mix proportion with different material type were determined by fire test. Second, the fire test of cementitious materials for fire resistance were performed on base mix proportions to evaluated their performance. Third, the performance of cementitious materials for fire resistance compare to the target value and existing commercial products. If the performance of developed cemetitious materials for fire resistance were satisfied the target value, this studies were stopped. But, this research return to first process if the performance of cementitious materials for fire resistance are not satisfied the target value. As a result of this study, the spalling did not happen for develop and existing commercial product. Also, developed cementitious materials for fire resistance are shown with excellent compressive strength, flexural strength, and bond strength, because it used a height density aggregate. And developed cementitious materials has sufficient resistance for fire.

A Study on Fire Resistance Using The Scale Experiments (축소실험을 통한 내화시험에 관한 연구)

  • Moon, Sung-Woong;Jeon, Jun-Pyo;Rie, Dong-Ho
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.176-179
    • /
    • 2011
  • 국내에서는 방화구획을 설정하여 화재 확산 방지 및 재실자의 대피 시간을 확보하고 있다. 방화구획에 설치되는 방화문은 방화문의 내화시험방법(KS F 2268-1)에 따라 시험을 거쳐 성적서를 발급 받은 제품에 대해 설치하도록 의무화 하고 있다. 그러나 본 시험방법은 시험체 제작, 설치 및 의뢰시험비용 등 상당한 비용이 소요될 뿐 아니라 제작, 설치, 시험에 소요되는 시간 또한 길다. 축소실험장치는 목재방화문 개발 중 재료의 내화성능을 평가할 장치로 개발되었으며, 표준시간-가열 온도곡선을 상회하는 가열실험을 통해 재료의 내화성능 결과를 얻을 수 있다. 본 실험에서는 난연 또는 불연성능이 뛰어난 재료를 대상으로 실험하였으며, 그 결과 난연목재는 5분, 마그네슘보드와 내화 직물원단은 60분의 내화성능을 갖춘 것으로 확인되었다. 이 결과를 토대로 방화문의 내화시험방법과 상관성을 도출하여 목재방화문 개발의 지표로 활용 가능하게 되었다.

  • PDF

Evaluation on the Thermal Resistance Capacity of Fire Proof Materials for Improving Fire Resistance of Near-Surface-Mounted FRP in Concrete (콘크리트내에 표면매입 보강된 FRP의 내화성능 향상을 위한 내화단열재 열저항성능 평가)

  • Yeon, Jea-Young;Seo, Soo-Yeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.5
    • /
    • pp.51-58
    • /
    • 2014
  • This paper presents a fire exposure test result to evaluate fire resistance capacity of retrofit method using FRP (Fiber Reinforced Polymer) in reinforcement concrete structure. Especially, this paper focused on near-surface-mounted retrofit method; FRP is mounted into the groove after making a groove in concrete. In the test, main parameters are retrofit method and materials for fire proofing. Spray type of perlite and board type of calcium silicate were considered as external fire proof on surface while particle of calcium silicate and polymer mortar as internal one in groove. By increasing the temperature of inside heating furnace, the transfer of temperature from surface of fire proofing material to groove in specimen was measured. As a result, fire proofing using the board of calcium silicate was more effective to delay the heat transfer from outside than spraying with perlite. It was found that the fire proofing could resist outside temperature of $820^{\circ}C$ at maximum to keep the temperature of epoxy below glass transit temperature (GTT).

Properties of Intumescence Alkali Silicates for Building Fire-Resistant (건축용 내화 재료로서의 포비성 알칼리 규산염의 특성에 관한 연구)

  • Kang, Hyun Ju;Kang, Seung Min;Song, Myong Shin;Kim, Young Sik;Park, Jong Hun
    • Applied Chemistry for Engineering
    • /
    • v.20 no.4
    • /
    • pp.416-422
    • /
    • 2009
  • The buildings constructed with steel structure are coated with certified fire resistive material to resist from fire. All the building materials lose their initial performances as time passes by, so they need some maintenance. The Sprayed Fire Resistive Material (SFRM) also loses its performance and this performance loss of the SFRM is very important because fire resistance of buildings depends on SFRM. So this study was aimed to synthesis of alkali-silicates for SFRM and to evaluate the effect of alkali-silicates, K-silicates, Na-silicates and Li-silicates, by exchange of mole ratios as basic factors, tested solubility, intumescence ratios, thermal analysis, powder X-ray diffraction, fire-resistant and heat-resistant.

Heat Transfer Modeling of Fiber-embedded Fire-Resistant High Strength Concrete (섬유혼입 내화 고강도 콘크리트의 열전달 모델)

  • Shin, Young-Sub;Han, Tong-Seok;Youm, Kwang-Soo;Jeon, Hyun-Kyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.2
    • /
    • pp.133-140
    • /
    • 2011
  • High strength concrete used for large structures is vulnerable to fire due to explosive spalling when it is heated. Recently, various research is conducted to enhance the fire-resistance of the high strength concrete by reducing the explosive spalling at the elevated temperature. In this study, a heat transfer analysis model is proposed for a fiber-embedded fire-resistant high strength concrete. The material model of the fire-resistant high strength concrete is selected from the calibrated material model of a high strength concrete incorporating thermal properties of fibers and physical behavior of internal concrete at the elevated temperature. By comparing the simulated results using the calibrated model with the experimental results, the heat transfer model of the fiber-embedded fire-resistant high strength concrete is proposed.

Preparation and Characterization of Fire-Resistant Silicone Polymer Composites Containing Inorganic Flame Retardants (무기계 난연제를 첨가한 실리콘 고분자 내화재료의 제조 및 특성분석)

  • Yoon, Chang-Rok;Lee, Jong-Hyeok;Bang, Dae-Suk;Won, Jong-Pil;Jang, Il-Young;Park, Woo-Young
    • Elastomers and Composites
    • /
    • v.45 no.2
    • /
    • pp.87-93
    • /
    • 2010
  • The fire resistive materials are used to resist from fire accidents in the building. In this study silicone rubber/inorganic flame retardant composites were prepared by mechanical stirring method, using aluminium trihydroxide(ATH, $Al(OH)_3$) and magnesium dihydroxide(MDH, $Mg(OH)_2$) as synergistic fire-resistant additives. The thermal properties of the fire resistant composites were characterized by thermogravimetric analysis(TGA). In addition, rheological properties were observed by rheometer and fire-resistant properties were tested by gas torch. Through this study, we realized that the silicone rubber containing ATH, MDH increased the performance of fire-resistance.

Evaluation of Strength and Fire Resistance Performance of Mortar Mixed with Oyster Shell and Egg Shell (굴 패각과 난각을 혼합한 모르타르의 강도 및 내화성능 평가)

  • Hae-Na Kim;Ui-In Jung;Bong-Joo Kim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.560-567
    • /
    • 2023
  • This study is part of the research on fire-resistant materials to prepare for changing fire behavior, oyster shell and egg shell, which are natural calcium carbonate materials, were substituted as fine aggregates. The purpose of this study was to evaluate the strength and fire resistance performance according to the substitution rate, and to provide data for use as fire resistance material. Oyster shells and egg shells were substituted with 10~50 % of the fine aggregate, respectively, and tested for strength and Simplified heating according to the KS test method. Although the strength of OS was measured to be higher than that of ES, the backside temperature was also measured to be higher. As a result, it is recommended to use fireproof boards with OS where strength performance is required, such as explosive fires, Where high fire resistance performance is required, such as high-temperature fires over 1000 ℃, fireproof boards with ES can be selected according to the application.