• Title/Summary/Keyword: 내화용 재료

Search Result 72, Processing Time 0.025 seconds

A Study on the Risk Assessment Using Simulation and Case Study of Urban Fire - Focusing on Market - (도시화재 사례 조사 및 시뮬레이션을 이용한 위험성 평가 - 시장지역을 중심으로 -)

  • Shin, Yi-Chul;Koo, In-Hyuk;Hayashi, Yoshihiko;Ohmiya, Yoshifumi;Kwon, Young-Jin
    • Fire Science and Engineering
    • /
    • v.25 no.6
    • /
    • pp.1-7
    • /
    • 2011
  • As population grows and urban facilities are concentrated in specific areas due to recent urbanization and industrialization, cities have structures vulnerable to both natural and man-made disasters. Most of these structures, whether buildings or residential houses, are left in a defenseless state if not given the appropriate check-up before they are built. The process of rapid urbanization without establishing the proper urban fire risk assessment will surely lead to disasters. This phenomenon occurred during the process of rapid urbanization and maybe said the result of chaotic urban expansion where modern urban infrastructure is not yet equipped in the city. Under the said circumstances, propagation processes of Korean urban fire cases were investigated to establish fire risk assessment system. Moreover, this paper explains the experiment performed for establishing urban risk assessment model. The said experiment was conducted using the new urban fire risk assessment model.

The Effect of Mineralizer Addition on Synthesis of Mullite using Kaolin (Kaolin을 이용한 Mullite 합성에 미치는 광화제 첨가 효과)

  • Lim, Byung-Soo;Kang, Kyong-In;So, You-Young;Park, Sung;Lee, Byung-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.1
    • /
    • pp.82-88
    • /
    • 1999
  • In this study, the formation of mullite phase with mineralizer have been investiagated Hadong Kaolin and boehmite were used as starting materials and also of TiCl4 and MnCl4 aquous solution were used as a mineralizer. In the addition of 3.5% MnO as a mineralizer, mullite single phase could be obtained at 125$0^{\circ}C$ without any other second phases. However in the addition of TiO2 as a mineralizer, mullite single phase is obtained at above 135$0^{\circ}C$. Therefore the formation of mullite is lowered in the case of MnO as a mineralizer than of TiO2. Because it is easy to obtain mullite single phase in the case of MnO addition, all the characteristics improved. The values of bulk density, water absorption and bending strength at room temperature were 2.72g/㎤, 0.27% and 180 MPa, respectively.

  • PDF

Study on the Internal Temperature of Flame Resistant Treated Wood Exposed to a Standard Fire (표준화재에 노출된 방염처리 목재의 내부온도에 관한 연구)

  • Kim, Hwang-Jin
    • Fire Science and Engineering
    • /
    • v.32 no.3
    • /
    • pp.14-18
    • /
    • 2018
  • The earlier studies on the fire resistance performance of woods used as building materials have focused on confirming combustion characteristics of fire retardant or flame resistant treated wood. In this paper, to confirm internal temperature changes closely related to pyrolysis of woods exposed to the flame, heating experiments were conducted in a heating furnace according to the standard heating temperature curves after Douglas-fir, which is widely used as structural materials, was treated with a flame resistant solution and flame retardant paint. As a result of the experiment, it was confirmed that the thermal diffusion inside the wood has decreased when the wood was treated with the flame resistant solution. However, in high temperature, the flame resistant effect could not be expected due to the peeling of the coating in the case of the flame resistant paint treated wood. Therefore, it can be considered that it is more effective to use the flame resistant solution which penetrates in to the inside of the wood than flame resistant paint which forms the coating on the surface of the wood in order to enhance the flame resistance effect on the thick wood.

High Temperature Properties of Cement Mortar Using EVA, EVCL Redispersible Polymer Powder and Fly Ash (EVA, EVCL 분말수지와 플라이애시를 혼입한 시멘트 모르타르의 고온특성)

  • Song, Hun;Shin, Hyeonuk
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.365-372
    • /
    • 2018
  • 3D printing technology of construction field can be divided into structural materials, interior and exterior finishing materials, and is mainly done by extruding and adapting. Particularly when it is applied as an exterior materials, it is mainly applied to an unstructured exterior materials and high accuracy is required. The exterior materials can be used as a cement composite materials, it is suitable also for a additive type manufacturing, and the role of a redispersible polymer powder is important. But, high temperatures, redispersible polymer cement base material beget dehydration and micro crack of cement matrix. In this research, we developed a EVA, EVCL redispersible polymer cement base material applicable as a 3D printing exterior materials, confirmed density and strength characteristics for application as an exterior materials, a flame retardancy test for improving the fire resistance of buildings and confirmed its possibility. From the test result, developed EVCL redispersible polymer cement mortar showed good stability in high temperatures. These high temperature stability is caused by the ethylene-vinyl chloride binding. Thus, this result indicates that it is possible to fire resistant 3D printing interior and exterior finishing materials.

A study on the Properties of Composite Systems Using Polymer-Modified Mortar and Epoxy Resins for Waterproofing and Anti-Corrosion of Concrete Structures (시멘트 혼입 폴리머와 에폭시수지를 복합한 수처리 콘크리트구조물용 방수방식재료의 성능평가에 관한 연구)

  • Bae Kee-Sun;Jang Sung-Joo;Oh Sang-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.1 s.85
    • /
    • pp.3-10
    • /
    • 2005
  • The purpose of this study is to investigate the properties of composite systems using polymer cement and epoxy resins for waterproofing and anti-corrosion to concrete structures such as water supply facilities and sewage-works. For the waterproofing and anti-corrosion of concrete structures, there can be required various properties such as absorption capacity and water permeability, adhesion and tensile strength, hair crack-resistance, impact-resistance, repeated low and high temperature test and chemical resistance, soundness for drinking water, soundness for drinking water and etc. In this study these engineering properties of composite systems using polymer-modified mortar and epoxy resins were examined and could be confirmed to satisfy the guidelines of KS. Especially, it was turn out that the adhesion properties was excellent and high crack-resistance up to 1.49 mm will be perform.

The Effect of Silica binder content ans Sintering condition on the Strength of Zircon-based Shell Mold (실리카 바인더 함량과 소결조건이 지르콘계 주형의 강도에 미치는 영향)

  • Kim, Jae-Won;Kim, Du-Hyeon;Kim, In-Su;Seo, Seong-Mun;Jo, Hae-Yong;Kim, Du-Su;Jo, Chang-Yong;Choe, Seung-Ju
    • Korean Journal of Materials Research
    • /
    • v.10 no.6
    • /
    • pp.415-421
    • /
    • 2000
  • The effect of silica binder content on the mechanical properties of zircon shell mold was investigated. Content of binder silica sol to refractory powder in weight[$R_W$] was adjusted from 0.18 to 0.43. Sintering of the shell mold was carried out in the temperature range of $871^{\circ}C$ to $1400^{\circ}C$. Green strength of the shell mold at room temperature increased with increasing $R_W$ and sintering temperature up to $1300^{\circ}C$. However, the mold with $R_W$ of 0.43 that sintered at $1400^{\circ}C$ for 3 hours showed relatively low strength and large level of porosity. The mechanical behavior of the shells is supposed to attributed to the difference in thermal expansion coefficient between refractory powder and binder silica. The optimum value of $R_W$ for zircon-based shell molds was found to be 0.33.

  • PDF

Fabrication and characterization of glass with E-glass fiber composition by using silica-alumina refused coal ore (사암계 석탄폐석을 활용한 E-glass fiber 조성의 유리 제조 및 특성)

  • Lee, Ji-Sun;Lim, Tae-Young;Lee, Mi-Jai;Hwang, Jonghee;Kim, Jin-Ho;Hyun, Soong-Keun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.4
    • /
    • pp.180-188
    • /
    • 2013
  • The glass of E-glass fiber composition was fabricated by using refused coal ore which is obtained as by-product from Dogye coal mine in Samcheok. We used silica-alumina refused coal ore which has low carbon content relatively, and the amount of refused coal ore has been changed from 0 to 35 % in batch composition. E-glass was fabricated by the melting of mixed batch materials at $1550^{\circ}C$ for 2 hrs with different refused coal ore composition of 0~35 %. We obtained a transparent and clear glass with high visible light transmittance value of 81~84%, thermal expansion coefficient of $5.39{\sim}5.61{\times}10^{-6}/^{\circ}C$ and softening point of $851{\sim}860^{\circ}C$. The glass fiber samples were also obtained through fiberizing equipment at $1150^{\circ}C$, and tested chemical resistance and tensile strength to evaluate the mechanical property as a reinforced glass fiber of composite material. As the result, we identified the properties of E-glass fiber by using refused coal ore are plenty good enough compare to that of normal E-glass without refused coal ore, and confirmed the possibility of refused coal ore as for the raw material of E-glass fiber.

Role of Graphene Derivatives in Anion Exchange Membrane for Fuel Cell: Recent Trends (연료전지용 음이온교환막에서 그래핀 유도체의 역할: 최근 동향)

  • Manoj, Karakoti;Sang Yong, Nam
    • Membrane Journal
    • /
    • v.32 no.6
    • /
    • pp.411-426
    • /
    • 2022
  • Energy plays a significant role in modern lifestyle because of our extensive reliance over energy-operating devices. Therefore, there is a need for alternative and green energy resources that can fulfill the energy demand. For this, fuel cell (FCs) especially anion exchange membrane fuel cells (AEMFCs) have gained tremendous attention over the other (FCs) due to their fast reaction kinetics without using noble catalyst and allow to use of cheaper polymers with high performance. But lack of highly conductive, chemically, and mechanically stable anion exchange membrane (AEM) still main obstacle to the development of high performance AEMFCs. Therefore, graphene-based polymer composite membranes came into the existence as AEMs for the FCs. The exceptional properties of the graphene help to improve the performance of AEMs. Still, there are lot of challenges in the graphene derivatives based AEMs because of their high tendency of agglomeration in polymer matrix which reduced their potential. To overcome this issue surface modification of graphene derivatives is necessary to restrict their agglomeration and conserved their potential features that can help to improve the performance of AEM. Therefore, this review focus on the surface modification of graphene derivatives and their role in the fabrication of AEMs for the FCs.

Distribution of Agalmatolite Mines in South Korea and Their Utilization (한국의 납석 광산 분포 현황 및 활용 방안)

  • Seong-Seung Kang;Taeyoo Na;Jeongdu Noh
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.543-553
    • /
    • 2023
  • The current status of domestic a agalmatolite mines in South Korea was investigated with a view to establishing a stable supply of agalmatolite and managing its demand. Most mined agalmatolite deposits were formed through hydrothermal alteration of Mesozoic volcanic rocks. The physical characteristics of pyrophyllite, the main constituent mineral of agalmatolite, are as follows: specific gravity 2.65~2.90, hardness 1~2, density 1.60~1.80 g/cm3, refractoriness ≥29, and color white, gray, grayish white, grayish green, yellow, or yellowish green. Among the chemical components of domestic agalmatolite, SiO2 and Al2O3 contents are respectively 58.2~67.2 and 23.1~28.8 wt.% for pyrophyllite, 49.2~72.6 and 16.5~31.0 wt.% for pyrophyllite + dickite, 45.1 and 23.3 wt.% for pyrophyllite + illite, 43.1~82.3 and 11.4~35.8 wt.% for illite, and 37.6~69.0 and 19.6~35.3 wt.% for dickite. Domestic agalmatolite mines are concentrated mainly in the southwest and southeast of the Korean Peninsula, with some occurring in the northeast. Twenty-one mines currently produce agalmatolite in South Korea, with reserves in the order of Jeonnam (45.6%) > Chungbuk (30.8%) > Gyeongnam (13.0%) > Gangwon (4.8%), and Gyeongbuk (4.8%). The top 10 agalmatolite-producing mines are in the order of the Central Resources Mine (37.9%) > Wando Mine (25.6%) > Naju Ceramic Mine (13.4%) > Cheongseok-Sajiwon Mine (5.4%) > Gyeongju Mine (5.0%) > Baekam Mine (5.0%) > Minkyung-Nohwado Mine (3.3%) > Bugok Mine (2.3%) > Jinhae Pylphin Mine (2.2%) > Bohae Mine. Agalmatolite has low thermal conductivity, thermal expansion, thermal deformation, and expansion coefficients, low bulk density, high heat and corrosion resistance, and high sterilization and insecticidal efficiency. Accordingly, it is used in fields such as refractory, ceramic, cement additive, sterilization, and insecticide manufacturing and in filling materials. Its scope of use is expanding to high-tech industries, such as water treatment ceramic membranes, diesel exhaust gas-reduction ceramic filters, glass fibers, and LCD panels.

Study on the hydrophobic modification of zirconia surface for organic-inorganic hybrid coatings (유-무기 하이브리드 코팅액 제조를 위한 지르코니아 표면의 소수화 개질 연구)

  • Lee, Soo;Moon, Sung Jin;Park, Jung Ju
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.260-270
    • /
    • 2017
  • Zirconia has white color and physical, chemical stability, also using in high temperature materials and various industrial structural ceramics such as heat insulating materials and refractories due to their low thermal conductivity, excellent strength, toughness, and corrosion resistance. If hydrophobically modified zirconia is introduced into a hydrophobic acrylate coating solution, the hardness, chemical, electrical, and optical properties will be improved due to the better dispersibility of inorganic particle in organic coating media. Thus, we introduced $-CH_3$ group through silylation reaction using either trimethylchlorosilane(TMCS) or hexamethyldisilazane(HMDZ) on zirconia surface. The $Si-CH_3$ peaks derived from TMCS and HMDZ on hydrophobically modified zirconia surface was confirmed by FT-IR ATR spectroscopy, and introduction of silicon was confirmed by FE-SEM/EDS and ICP-AES. In addition, the sedimentation rate result in acrylate monomer of the modified zirconia showed the improved dispersibility. Comparison of the sizes of a pristine and the modified zirconia particles, which were clearly measured not by the normal microscope but by particle size analysis, provided a pulverizing was occurred by physical force during the silylation process. From the BET analysis data, the specific surface area of zirconia was approximately $18m^2/g$ and did not significantly change during modification process.