• Title/Summary/Keyword: 내풍성

Search Result 72, Processing Time 0.02 seconds

An Experimental Study on 3-Dimension Aerodynamic Properties of Composite Cable Stayed Bridge (합성형 사장교의 3차원 공기역학적 특성에 대한 실험적 연구)

  • Min, In Ki;Chae, Young Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.6
    • /
    • pp.741-750
    • /
    • 2008
  • The aim of this study was to analyze the aerodynamic properties of the composite cable-stayed bridge by conducting three-dimensional wind tunnel tests. Focusing on the improved section of the bridge in the two-dimensional wind tunnel tests, the bridge's aerodynamic stability was estimated based on the angles of attack and the wind angles. The aerodynamic properties of vertical galloping, torsion galloping,and torsion flutter were also estimated based on the design wind velocity, and because much of the cable-stayed bridge was constructed using FCM, it was not sufficiently stiff during the bridge's construction. Therefore,the experience progressed by stages: from the full stage to the tow stage, and until the bridge became a single tower. Since the original plane was designed to be a steel box girder, the aerodynamic properties of the steel-box-type and composite-type girder could be compared. The results of this study can be utilized as basic data regarding the aerodynamic properties of medium-length and short composite cable-stayed bridges.

Elastic Seismic Design of Steel Highrise Buildings in Regions of Moderate Seismicity (중진대 철골조 초고층 건물의 탄성내진설계)

  • Lee, Cheol Ho;Kim, Seon Woong
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.5
    • /
    • pp.553-562
    • /
    • 2006
  • Lateral loading due to wind or earthquake is a major factor that affects the design of high-rise buildings. This paper highlights the problems associated with the seismic design of high-rise buildings in regions of strong wind and moderate seismicity. Seismic response analysis and performance evaluation were conducted for wind-designed concentrically braced steel high-rise buildings in order to check the feasibility of designing them per elastic seismic design criterion (or strength and stiffness solution) in such regions. Review of wind design and pushover analysis results indicated that wind-designed high-rise buildings possess significantly increased elastic seismic capacity due to the overstrength resulting from the wind serviceability criterion. The strength demand-to-capacity study showed that, due to the wind design overstrength, high-rise buildings with a slenderness ratio of larger than four or five can elastically withstand even the maximum considered earthquake (MCE) with the seismic performance level of immediate occupancy under the limited conditions of this study. A step-by-step seismic design procedure per the elastic criterion that is directly usable for practicing design engineers is also recommended.

Aerodynamic Stability Assessment of PWS and CFRC Hanger Ropes for Suspension Bridge by Experiments (현수교 PWS 및 CFRC 행어로프의 내풍안정성 실험 평가)

  • Park, Hyung-Ghee;Kang, Seon-Jin
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.6
    • /
    • pp.21-30
    • /
    • 2008
  • In this study, to evaluate the aerodynamic stability of suspension bridge hanger ropes, the wind tunnel tests are carried out. It is found that the vortex induced vibration is detected only in single PE-coated PWS cable case. And the wake galloping is occurred in twin cables spaced $3\sim6$ cable diameters of cable center to center when the incidence angle of wind is only zero degree. In case of other incidence angles of wind except zero degree, the wake galloping or the wake flutter are showed in twin cables even outside range of the bounds of $3\sim6$ cable diameters. CFRC cable shows very stable for the twin cables regardless of the distance between two cables, and also for various incidence angles of wind. Thus the characteristic of CFRC rope overwhelms one of PWS cable in aerodynamic stability.

Control of Asymmetrical Tall Buildings under Wind Loading (비대칭 고층건물의 내풍 및 제진 해석)

  • 민경원;김진구;조한욱
    • Computational Structural Engineering
    • /
    • v.10 no.2
    • /
    • pp.203-211
    • /
    • 1997
  • In the design of tall building system, the wind loading can be more dominant factor than earthquake loading, and thus, it is important to check the stability and human comfort against wind. Experimental wind tunnel test is usually performed to predict wind behavior of a tall building, however, the test is not cost-effective in the preliminary stage for various structural models of tall building systems. In this regard, the study is focused on the numerical wind analysis of the tall building with and without tuned mass dampers based on the three dimensional model of wind loads and building behavior. As a numerical result, an asymmetrical 102-story tall building is presented to show the results of root mean squares of build responses with and without tuned mass dampers.

  • PDF

Development of Slender Aerodynamic Girder for Suspension Bridges (현수교 세장 내풍 단면의 개발)

  • Kwon, Soon-Duck;Lee, Myeong-Jae;Cho, Eukyung;Lee, Seung-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.241-256
    • /
    • 2010
  • This study intends to develop an aerodynamic girder for suspension bridge with width corresponding to 1/70 of the main span length. In the first step of present study, parametric study for the effects of major structural properties on aerodynamic stability of bridges was performed. The span length and natural frequency of bridges were found to be free from girder width, girder height, and aspect ratio of width to height. The empirical equation according to confidence interval was proposed to estimate the natural frequencies of bridges from span length. From the sensitivity analysis, it was revealed that the torsional frequency was dominant parameter among various structural properties that affected flutter velocity mostly. The final aerodynamic bridge section which satisfied the flutter criteria was found from section wind tunnel tests for 30 cross sectional models. The aerodynamic stability of the developed cross section was verified by multimode flutter analysis. The present economical cross section can be used for long span suspension bridge.

Wind Stability of Commercially Important Tree Species and Silvicultural Implications, Daegwallyeong Korea (대관령 지역 경제림에 대한 내풍 안정성 분석 및 임업적 적용)

  • Moktan, Mani Ram;Kwon, Jino;Lim, Joo-Hoon;Shin, Moon-Hyun;Park, Chan-Woo;Bae, Sang-Won
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.1
    • /
    • pp.58-68
    • /
    • 2015
  • This study compares the wind stability of Larix kaempferi (Lamb.) Carr., Pinus koraiensis Sie. & Zucc. and Abies holophylla Maxim. to understand and inform wind risk management of these plantation trees at Daegwallyeong, Korea. Temporary square plots of $20m{\times}20m$ ($400m^2$) were laid out, and DBH (Diameter at Breast Height) and height for trees greater than 10 cm in DBH were measured by species. A total of 15 plots with 5 plots each in L. kaempferi, P. koraiensis and A. holophylla stands were sampled at random. Among the species, A. holophylla and P. koraiensis have comparatively lower h/d (Height/DBH) ratios than L. kaempferi. These results indicate that the former two species are more wind firm than the latter species. About 9% of the L. kaempferi trees have higher h/d ratios than the critical threshold limit 80. These trees are vulnerable to wind damage and should be removed in the next thinning regime. The analysis of variance detected a significant difference (p < 0.05) in the h/d ratios and Gini coefficient indicating species differences and DBH size variation, respectively. Gini coefficient was 16.4% in A. holophylla, 15.9% in P. koraiensis and 14% in L. kaempferi stands indicating limited DBH size variation. Lower h/d ratios are attributed to thinning in these stands and tree morphological differences. To increase wind firmness, low thinning should concentrate to remove trees with the h/d ratio above 80 coinciding at the time of stand distinction phase. Forest managers and practitioners should measure and maintain h/d ratios of trees below the critical threshold limit of 80 through stand density management. Variable density thinning approach should be tested to increase tree DBH sizes of the even-aged stands.

The Wind Pressure Stability Analysis of the Platform Screen Door in Urban Railway (도시철도 승강장 스크린 도어의 풍압 안정성 해석)

  • Song, Moon-Shuk;Lee, Seung-Il
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.1
    • /
    • pp.17-22
    • /
    • 2012
  • Installation of screen doors at platform ensures safety of passengers by separating platform from tracks. Besides, it reduces drought and air pressure caused by train conserves heating and cooling energy in the station. In order to guarantee safety of platform screen doors, design considering evaluation of wind pressure requires. In this study, Sosa station, semisealed screen door and EMU are analyzed to estimate the wind pressure of platform screen doors model. Also Sosa station is influenced by climatic condition because it exposed to outside. Therefore, analysis on the wind pressure of platform screen doors is performed under the worst weather condition such as typhoon. The results of analysis, Maximum inside pressure 287 Pa, and consideration of outside pressure as typhoon to the maximum design pressure of 865 Pa 2756.25 Pa conditions approximately 3.1 times the difference can be seen that ensure stability.