• Title/Summary/Keyword: 내풍설계

Search Result 74, Processing Time 0.026 seconds

Estimation of Standard Load for Disaster-Resistant Design of Outdoor Signboards (내재해형 옥외광고물 설계를 위한 표준하중 산정)

  • Lee, Sungsu;Kim, Junyeong;Ham, Hee Jung;Kim, Ji Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.2
    • /
    • pp.131-140
    • /
    • 2016
  • Recent destructions of outdoor signboards have frequently been caused by strong wind, resulting in damage on the property and human livelihood. One of the major causes of the problems is inadequate implementation of structural design code to the outdoor signboards which are vulnerable to wind. This leads to this paper to present the design guideline of wind-resistant outdoor signboards. In order to estimate the design wind speed, basic wind speeds over Korea suggested by KBC(2015)(revision) are corrected with land surface roughness and topography of the terrain and installation height of the signboard. This paper also suggested the procedure of wind load estimation for different types of outdoor signboards; wall attached type, wall ribbed type and ground erected type. Since the process involves complex calculation to some extent, this paper presents summarized version of wind load estimation from non-professional point of view.

Estimating Design Wind Speeds for a Long Span Bridge in a Complex Terrain (주변지형을 고려한 장대교량 설계풍속 산정)

  • Lee, Seok-Yong;Kim, Yoon-Seok;Lee, Seung-Woo;Kwon, Ho-Chul;Kim, Seog-Cheol;Cho, Kyung-Hak
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.429-431
    • /
    • 2010
  • 태풍 및 지형에 대한 컴퓨터 시뮬레이션과 기상관측자료에 대한 분석을 통해 장대교량의 가설위치에서 발생할 수 있는 풍환경을 분석하고 설계풍속을 산정하였다. 설계풍속의 산정은 내풍 설계를 위한 하중을 결정하는 과정으로 내풍설계의 기본이 되는 부분이다. 풍환경 분석 과정은 Monte Carlos(이하 MC) 태풍 시뮬레이션 분석, Gumbel 극치분석, CFD 지형효과 분석으로 구성된다. MC 태풍시뮬레이션 분석을 통해 태풍시기(6~10월)의 재현주기별 강풍발생빈도를 도출하였다. Gumbel 극치분석을 통해 인근의 기상관측자료로부터 전년도에 대한 재현주기별 강풍발생빈도를 도출하였다. CFD 지형효과 분석을 통해 분석대상지역의 주변지형으로 인한 풍속증감효과를 분석하였다. 각 결과를 종합하여 보수적인 재현주기별 설계풍속을 산정하였다.

  • PDF

Seismic Performance Evaluation of Wind-Designed High-rise Steel Diagrid Frames (내풍설계된 초고층 철골대각가새골조의 내진성능평가)

  • Kim, Seon-Woong;Kim, Jong-Ho;Kim, Tae-Jin;Kang, Dae-Eon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.14-17
    • /
    • 2011
  • 본 논문에서는 강풍대이면서 중/약진대에 위치하는 초고층건물에 내습할 수 있는 잠재적 지진에 대하여 다양한 지반조건에 따른 응답스펙트럼해석과 내진성능평가를 수행하였다. 국내와 같이 강풍대에 위치하면서 중약진대에 속하는 지진환경하에서 세장비 5.2이상의 초고층 철골대각가새골조는 10%/50년 재현주기 지진동에 대해서는 탄성저항가능성을 나타내었고 세장비 6.9이상의 초고층 철골대각가새골조는 2%/50년 재현주기 지진동에 대해서도 탄성적으로 저항할 수 있음을 보여주었다.

  • PDF

Seismic Response Analysis of Wind-Designed Concentrically Braced Steel Highrise Buildings (내풍설계된 초고층 철골중심가새골조의 지진응답 해석)

  • 이철호;김선웅
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.60-67
    • /
    • 2004
  • The designer of a tall building even in moderate and low seismic regions should, in finalizing the desist consider the probable impact of the design basis earthquake on the selected structural system. In this study, seismic response analysis was conducted to evaluate the seismic performance of concentrically braced steel highrise buildings which were designed only for governing wind loading under moderate seismicity. The main purpose of this analysis was to see if the wind design would create a system whose elastic capacity clearly exceeds the probable demand as suggested by the design basis earthquake. The strength demand-to-capacity study revealed that the wind-designed steel highrise buildings with the aspect ratio of larger than five can withstand the design basis earthquake elastically by a sufficient margin due to the system over-strength resulting from the wind-serviceability criterion. The maximum story drift demand from the design basis earthquake was just 0.25% (or half the limit of Immediate Occupancy performance level in FEMA 273)

  • PDF

Seismic Performance Evaluation of Highrise Steel Diagrid Frames (초고층 철골대각가새골조의 내진성능평가)

  • Kim, Seon-Woong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.3
    • /
    • pp.307-317
    • /
    • 2011
  • This paper is to investigate the possibility of the elastic seismic design for highrise buildings through seismic performance evaluation for potential earthquakes that wind-designed highrise buildings located in strong wind zone and low seismicity can be experienced. Highrise steel diagrid frames which is the most loved structural system in recent years were wind-designed and the substantial system overstrength due to wind design procedure is verified, For the highrise steel diagrid frames, the response spectrum analysis and the seismic performance evaluation by various soil sites were conducted. It was showed that highrise steel diagrid frames with slenderness of greater than 5.2 under strong wind and low seismic zones such as Korea peninsula can resist elastically for the 500 year return period earthquake and have the possibility of seismic design for the 2400 year return period earthquake. In the member level, highrise steel diagrid frames with slenderness of greater than 5.2 all presented the immediate occupancy level regardless of soil sites for the 500 year return earthquake and excluding the $S_E$ soil site for the even 2400 year return period earthquake. In the system level, highrise steel diagrid frames with slenderness of greater than 5.2 showed the immediate occupancy level for $S_A$ and $S_B$ soil sites and the life safety for $S_C$ to $S_E$ soil site in the 500 year return period. The seismic performance level of highrise steel diagrid frames for the 2400 year return period earthquake displayed one step lower than the 500 year return period earthquake.

Estimation of Design Wind Speed for Building Using Spatial Information Analysis (공간정보 분석을 통한 건축물의 설계풍속 산정)

  • Lee, Seong-Yun;Jo, Hyun-Jae;Lee, Hyun-Ki;Choi, Se-Hyu
    • Spatial Information Research
    • /
    • v.23 no.3
    • /
    • pp.79-89
    • /
    • 2015
  • Once the building is higher than certain size, the wind effect plays very important role in structure design. Moreover, this is more important in Korea because dangerous phenomena like typhoons are common. Rational wind resistant design is being magnified considering the global flow and climate changes. This research presented the estimation method of design wind load using spatial information analysis based on 1:5,000 digital map and performed comparative analysis with actual application cases. The wind velocity pressure exposure coefficient and topographic coefficient turned out to be more quantitative and rational when calculated through the proposed method. The time and cost are comparatively low when compared with traditional method which contribute to the economic and rational wind resistant design.