• Title/Summary/Keyword: 내진성능보강

Search Result 403, Processing Time 0.028 seconds

Improvement Plan of Seismic Retrofitting Support System for Establishing Earthquake Disaster Prevention Policy (지진 방재정책 수립을 위한 건축물 내진보강 지원제도 개선방안)

  • Hur, Jin-Ho;Kim, Hee-Kyu;Shin, Min-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.611-617
    • /
    • 2017
  • In recent decades, unpredictable earthquakes around the world have caused massive damage. The incidence of earthquakes in Korea that are larger than M5.0 has increased the social demand for earthquake policies. As the seismic performance of buildings has been proven to be the most effective damage mitigation responsibility from past earthquake damage cases, the US and Japan are implementing a seismic retrofitting support system. In Korea, this is being implemented through tax benefits, but it is being neglected by the owners of private buildings. As a solution to this problem, this paper reviews, compares, and analyzes the domestic and overseas seismic retrofitting support systems, and suggests ways to improve the policy and support system for revitalizing the seismic retrofitting of private buildings based on the results.

Seismic Retrofit of GFRP Wrapping on the Lap-spliced Bridge Piers (GFRP 래핑에 의한 겹침이음된 교각의 내진보강)

  • Youm, Kwang Soo;Kwon, Tae Gyu;Lee, Young Ho;Hwang, Yoon Kook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2A
    • /
    • pp.311-318
    • /
    • 2006
  • This paper presents experimental studies on investigating the seismic retrofit performance of reinforced concrete circular columns with poor lap-splice details using GFRP wrapping. Five full-scale model columns have been tested. The prototype structure is an existing circular reinforced concrete bridge piers designed following the pre-seismic codes and constructed in South Korea in 1979. The as-built column will be expected to suffer brittle failure due to the bond failure of lap-spliced longitudinal reinforcement. The retrofitted columns using GFRP wrapping showed significant improvement of seismic performance. However, the predicted flexural failure mode was not achieved and the longitudinal bars were not yielded. Failure modes of the retrofitted columns are considered to be the gradually delayed bond slip in lap-spliced longitudinal reinforcement. Suggested retrofit design methods using GFRP were validated experimentally.

Compressive Behavior of H-section Brace Strengthened by Non-welded Cold-Formed Element (무용접 냉간성형 조립재로 보강한 H형강 가새의 압축거동)

  • Kim, Sun Hee;Kim, Do Bum;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.2
    • /
    • pp.169-180
    • /
    • 2015
  • Recently, Seismic performance of the building built in the past is required to review, because the code for seismic design have been reinforced. In 2009, if the revised latest criteria of seismic design is applied, the majority the steel structure of the low-rise concentrically braced system is short of the seismic performance. Also, when the steel braces are subject to compressive load, which causes unstable behavior of the structure. In order to verify the compressive behavior of the reinforced braces, structural performance test was conducted with variables of slenderness ratio and the amount of reinforcement. Therefore, this study suggests restraining the bending buckling of slender H-shaped braces to resist compressive force. In order to verify the compressive behavior of the reinforced braces, structural performance test was conducted with variables of slenderness ratio and the amount of reinforcement.

Seismic Performance Enhancement of Reinforced Concrete Bridge Piers wrapped with Prestressed Steel Jacket by the Quasi-Static Test (프리스트레스트된 강판으로 보강된 철근콘크리트 교각의 준정적 실험에 의한 내진 성능 향상 연구)

  • Choel, Beak-Min;Chung, Young-Soo;Choi, Eun-Soo;Yang, Dong-Wook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.77-80
    • /
    • 2008
  • Lap splices were located in the plastic hinge region of most bridge piers that were constructed before the adoption of the seismic design provision of Korea Highway Design Specification on 1992. This research aims at evaluating the seismic performance of reinforced concrete bridge piers with lap-spliced longitudinal steels, which were strengthened with prestressed steel jacket in the plastic hinge region. Quasi-static test was used to investigate the seismic performance enhancement of RC test specimens. Conventional method applied mortar grouting inside steel jacket, but this research did not apply mortar grouting inside steel plate. Four test specimens in an aspect of 3.5 were constructed with 400 mm in diameter and 1600 mm in height. Test parameters are the lap splice of longitudinal reinforcing steels and thickness of steel jacket.

  • PDF

Seismic Performance of Special Shear Wall with the Different Hoop Reinforcement Detail and Spacing in the Boundary Element (경계요소 횡보강근의 상세와 배근간격에 따른 특수전단벽의 내진성능)

  • Chun, Young-Soo
    • Land and Housing Review
    • /
    • v.6 no.1
    • /
    • pp.11-19
    • /
    • 2015
  • This paper presents experimental results on detailing of boundary element transverse reinforcement, proposed to alleviate placement detailing of special shear wall experiencing difficulty in construction at the sites due to recently reinforced seismic regulations, according to the type and placement interval of transverse reinforcement. As a result of experiment, crack and destruction aspects of SSWR series specimen that employed the proposed detailing of transverse reinforcement showed similar trend as SSW series specimen that used closed hoop. Predicted maximum strength values were exceeded. Also as a result of comparing energy dissipation ability, SSWR2 specimen that follows alleviated placement detailing was found to have similar seismic performance as special shear wall SSW2 specimen based on the existing design standard. As it satisfies the deformation angle condition of 1.5% provided in the design standard, SSWR2 can be used as the main lateral force resistance element in structures.

Seismic Performance Evaluation of Inverted V Braced Steel Frames with Considering P-Δ Effects: A Case Study (P-Δ 효과를 고려한 역 V형 철골 가새골조의 내진성능평가: 사례연구)

  • Lee, Cheol-Ho;Kim, Jeong-Jae
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.97-103
    • /
    • 2004
  • Most of the columns in centrally braced steel frame buildings are usually designed as the gravity columns to reduce connection cost. For a rational seismic performance evaluation of centrally braced steel frame buildings, it is important to properly incorporate in the analysis  the P-${\Delta}$ effects arising from the gravity columns. An effective scheme for the P-${\Delta}$ effects modeling due to the gravity columns was illustrated based on the concept of fictitious leaning column. Seismic performance evaluation of inverted V braced steel frames with or without P-${\Delta}$ effects modeling was conducted by following the FEMA 273 NSP (Nonlinear Static Procedure). The problem in estimating dynamic P-${\Delta}$ modification factor (C3) in FEMA 273 was discussed. The results of this study indicated that the P-${\Delta}$ effects should be included in the seismic performance evaluation of centrally braced steel frames. This study also showed that the inverted V braced frames, retrofitted by applying the tie bars to redistribute the inelastic demand over the height of the building, exhibit significantly improved seismic performance.

Seismic Performance of Precast Beam-Column Joints with Thru-Connectors (관통형 연결재로 연결된 PC 보-기둥 맞댐 접합의 내진성능에 관한 실험적 연구)

  • Park, Seok-June;Park, Soon-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.83-84
    • /
    • 2010
  • Precast beam column joints with thru-connectors are developed from precedent study. The seismic performance is evaluated by experimental method. The test results of the precedent study showed that failure modes for all specimens were a compression failure by characteristics of unbonded tendon. Thus, variable considered in the research program for a tensile failure include the use of dog-boned longitudinal steel and concrete confined with steel spirals. The analysis of structural characteristics and evaluation of seismic performance of specimens was conducted by the experimental way. Comparison of result with the test specimens indicates that seismic performance is higher than the precedent study due to concrete confinement effect from steel spirals.

  • PDF

A Study on the Seismic Performance Improvement of Mid and Low-Rise RC Grid Structures Using Steel Slab Hysteretic Damper (강재 슬래브 이력형 댐퍼(SSHD)를 이용한 중·저층 RC 격자 구조물의 내진성능 향상에 관한 연구)

  • Kim, Dong Baek;Lee, In Duk;Choi, Jung Ho
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.3
    • /
    • pp.418-426
    • /
    • 2019
  • Purpose: After analyzing the seismic capability of low-rise RC grid structures with insufficient seismic performance, the purpose of the project is to install steel slab hysteretic dampers (SSHD) to improve the seismic performance of beams and columns, and to suggest measures to minimize damage to the structure and human damage when an earthquake occurs. Method: The evaluation of the seismic performance of a structure is reviewed based on the assumption that the seismic performance is identified for the grid-type subway systems that are not designed to be seismic resistant and the installation of an SSHD system, a method that minimizes construction period, if insufficient, is required. Result: After the application and reinforce of structure with SSHD, and the results of eigenvalue analysis are as follows. The natural periodicity of longitudinal direction was 0.55s and that of vertical direction was 0.58s. Conclusion: As results of cyclic load test of structure with SSHD, the shear rigidity of damper is 101%, the energy dissipation rate is 108% and, plastic rotation angle of all column and beam is satisfied for $I_o$ level and therefore it is judged that the reinforce effect is sufficient.

Study on Reinforcement Effect of Circular RC Columns by Helical Bar Under Cyclic Lateral Load (반복 횡하중을 받는 원형 철근콘크리트 기둥의 Helical Bar 보강효과에 대한 연구)

  • Kim, Seong-Kyum;Park, Jong-Kwon;Han, Sang-Hee;Kim, Byung-Cheol;Jang, Il-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.48-58
    • /
    • 2014
  • In this study, quasi-static according to the displacement-controlled (strain control) method tests on RC columns for seismic reinforcement performance in accordance with the provisions of the seismic design and construction before 1992 design code for highway bridges in korea. Used reinforcement that improves the performance of Inorganic Helical Bar, a kind of alloy steel, circular columns were tested outside the seismic reinforcing. In the experiment, fracture behavior, lateral load-displacement relation, ductility and energy assessment evaluation was performed through tests. The variables in experimental are section force of reinforcement, spiral reinforcement spacing, reinforcement method. Improved seismic performance and effect were confirmed through quasi-static test experiments. The results of study confirmed determination the appropriate size of reinforcement, reinforcement forces, spacing and selection of the type required, furthermore, not only mechanical reinforcement but also substitution of high-strength concrete reinforced with concrete cover improved seismic performance.