• Title/Summary/Keyword: 내진보강 공법

Search Result 112, Processing Time 0.036 seconds

Seismic Resistance of Masonry Walls Strengthened with Unbonded Prestressed Steel Bars and Glass Fiber Grids (강봉 및 유리섬유로 비부착 보강된 조적벽체의 내진 저항성 평가)

  • Baik, Ji-Sung;Yang, Keun-Hyeok;Hwang, Seung-Hyeon;Choi, Yong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.17-26
    • /
    • 2020
  • This study examined the structural effectiveness of the unbonded technique originally developed for seismic strengthening of unreinforced masonry walls on the basis of the prestressed steel bars and glass fiber (GF) grids. The masonry walls were strengthened by using individual steel bars or GF grids and their combination. Test results showed that the proposed technique was favorable in enhancing the strength, stiffness, and ductility of the masonry walls. When compared with the lateral load capacity, stiffness at the ascending branch of the lateral load-displacement curve, and energy dissipation capacity of the unstrengthened control wall, the increasing ratios were 110%, 120%, and 360%, respectively, for the walls strengthened with the individual GF grids, 140%, 130%, and 510%, respectively, for the walls strengthened with the individual steel bars, and 160%, 130%, and 840%, respectively, for the walls strengthened with the combination of steel bars and GF grids. The measured lateral load capacities of masonry walls strengthened with the developed technique were in relatively good agreement with the predictions by the equations proposed by Yang et al. Overall, the developed technique is quite promising in enhancing the seismic performance of unreinforced masonry walls.

Seismic Performance of Fabricated Internally Confined Hollow CFT Column (조립식 내부 구속 중공 CFT 기둥의 내진 성능)

  • Won, Deok Hee;Han, Taek Hee;Kim, Seungjun;Kang, Young Jong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.397-407
    • /
    • 2013
  • Recently, a great progress has been made in bridge construction technology through the development of high performance materials and new structural types. However, most of attention has been paid to the cast-in-place technologies and material cost saving. The cast-in-place method is always subject to some environmental damages in construction sites, which frequently causes conflicts with residents. To overcome the disadvantages, a lot of fabrication construction method was developed. Most fabrication construction methods developed up to now have been applied for superstructure of bridges. In contrast, such fabricable methods developed for substructures are extremely rare. A fabricated column using ICH CFT(Internally Confined Hollow CFT) column was developed in a series of previous researches. Included in the previous studies are design and construction methods for the precast segmental coping, the column-coping connection, the column-segment connection, column-foundation connection. In this paper, seismic performance of the fabricated ICH CFT columns was extensively investigated experimentally. Two test specimens were prepared depending on the connection methods of segments; one by mortar-grouting method and the other by reinforcement method using stiffeners.

Analysis on the Dynamic Behavior of Breakwater with the DCM Method Using the Shaking Table Test (진동대시험을 이용한 DCM공법에 따른 방파제의 동적거동 분석)

  • Kim, Youngjun;Park, Innjoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.5
    • /
    • pp.25-32
    • /
    • 2022
  • As recently, there have been two earthquakes with a magnitude of 5.0 or greater in Korea and the number of smaller earthquakes has increased, a lot of research and interest in earthquake-resistant design are increasing. Especially, the Pohang earthquake has also raised interest in earthquake-resistant design of port facilities. In this study, experiments and analysis were conducted on the dynamic behavior of upright and inclined breakwaters during earthquakes among port structures through the 1g shaking table test. To this end, three seismic waves were applied to the model to which the similarity law (scale effect) was applied: long period (Hachinohe), short period (Ofunato) and artificial seismic waves. The acceleration and displacement of the upright and inclined breakwaters were analyzed according to whether the DCM method was reinforced during earthquakes based on the results of shaking table test. As the result, the dynamic behavior of the upright and inclined breakwater shows a tendency to suppress the amplification of acceleration as bearing capacity and rigidity increase when DCM method is reinforced.

Experimental Study on the Development of a Seismic Reinforcement Method for Reinforced Concrete Columns using High-tensile Alloy Materials (고인장 합금재를 활용한 철근콘크리트 기둥의 내진보강공법 개발에 관한 실험적 연구)

  • Do-Yeon Kim;Il-Young Jang
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.2
    • /
    • pp.411-418
    • /
    • 2024
  • Purpose: This study aims to develop brand new bolt fastening type of seismic retrofit using high tensile alloy materials for existing reinforced concrete columns. Method: A T-type cross-sectional seismic retrofit made of SUS304 and SS275, and the high-tensile bolt of SCM435 was analyzed for the effect of material properties on seismic performance through bending test. Result: The experiment using SUS304 shows a 7% higher maximum strength and 22% higher yield strength and shows a higher compressive stress of 360MPa. In addition, the change in the neutral axis is also smaller. Conclusion: Seismic retrofit using SUS304 is considered to be better in terms of yield strength, tensile strength, neutral axis change, and ductility, and it is considered necessary to experiment with RC column real experiments in future studies.

Evaluation of Lateral Strength and Ductility of Velcro Reinforced RC Columns with Finite Element Analysis (유한요소해석을 통한 벨크로로 보강된 RC 기둥의 횡방향 강도 및 연성 능력 평가)

  • Kim, Sang-Woo;Kim, Kyeong-Min;Kim, Geon-Woo;Lee, Su-Young;Kim, Jin-Sup
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.4
    • /
    • pp.12-19
    • /
    • 2021
  • Recently, with frequent earthquakes around the world, research on seismic design and seismic reinforcement of reinforced concrete facilities has been actively conducted from earthquakes. In particular, columns, which are compressed members of reinforced concrete structures, are vulnerable to lateral forces caused by earthquakes, so an appropriate seismic reinforcement method is required. Therefore, this study intended to develop Velcro seismic reinforcement method that is quick and easy to construct. For the development of Velcro seismic reinforcement, the adhesion and tensile strength of the existing industrial velcro was improved. A direct tensile test was also conducted to compare the tensile performance of the newly-developed velcro seismic reinforcement to industrial one. In addition, numerical analysis was performed to predict the seismic performance of RC columns reinforced by industrial and newly-developed velcro. Based on the analysis results, the strength and ductility of the non-seismic and velcro-reinforced RC column were reviewed. The analysis confirmed that both the strength and ductility of non-seismic RC columns reinforced by industrial and newly-developed velcro increased, but the seismic performance of the newly-developed Velcro reinforcement is better than that of industrial velcro.

Experimental Study on the Bolt Assembly type CFT Seismic Reinforcement Construction Method (볼트조립식 CFT 내진보강공법에 관한 실험적 연구)

  • Kang, Su-Jin;Lee, Dong-Un;Yoon, Jung-Bae;Kim, Yong-Ki
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.6-7
    • /
    • 2020
  • The government of South Korea enacted Earthquake Recovery Plan Act in 2008. In order to meet the requirement of this law, the important buildings, such as schools, public offices and so on, are in the process of seismic retrofit. This paper introduces the experimental data about a non-retrofitted concrete column and retrofitted column with a bolt assembly type CFT(concrete-filled steel tube).

  • PDF

Experimental Study on the DT Steel Frame Seismic Reinforcement Construction Method (DT 스틸 프레임 내진보강공법에 관한 실험적 연구)

  • Woo, Mi-So;Lee, Dong-Un;Yoon, Jeong-Bae;Moon, il-Gwan
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.4-5
    • /
    • 2020
  • The research presented in this paper is subject to RC frame that increases seismic capacity by attaching DT(Double T type) steel frame to reinforced concrete column. The object of this study is not only to build experimental database providing necessary information for retrofit column but also to formulate modeling parameters of RC frame retrofitted by DT steel frame through comparing analysis for analytical model predicting inelastic behavior of reinforced concrete members.

  • PDF

Studies on Behavior Characteristics of Retrofitted Cut-and-Cover Underground Station Using Centrifuge Test Results (원심모형실험을 이용한 내진 보강된 개착식 지하역사의 거동특성 연구)

  • Kim, Jin-Ho;Yi, Na-Hyun;Lee, Hoo-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.2
    • /
    • pp.24-33
    • /
    • 2017
  • Domestic urban railway underground station structures, which were built in the 1970s ad 1980s, had been constructed as Cut-and-Cover construction system without seismic design. Because the trends of earthquake occurrence is constantly increasing all over the world as well as the Korean Peninsula, massive human casualties and severe properties and structures damage might be occurred in an non-retrofitted underground station during an earthquake above a certain scale. Therefore, to evaluate the retrofit effect and soil-structure interaction of seismic retrofitted underground station, a centrifugal shaking table test with enhanced stiffness on its structural main member are carried out on 1/60 scaled model using the Kobe and Northridge earthquakes. The seismic retrofitted members, which are columns, side walls, and slabs, are evaluated to comparing with existing non-retrofitted centrifuge test results Also, to simulate the scaled ground using variation of shear velocity according to site conditions such as ground depth and density, resonant column test is performed. From the test results, the relative displacement behavior between ground and structures shows comparatively similar in ground, but is increased on ground surface. The seismic retrofit effects were measured using relative displacements and moment behavior of column and side walls rather than slabs. Additionally, earthquake wave can be used to main design factor due to large structural deformation on Kobe earthquake wave than Norhridge earthquake wave.

Examples for Underwater Repair and Strengthening of Bridge Substructures (수중부 하부 구조의 보수 보강)

  • 유동우
    • Magazine of the Korea Concrete Institute
    • /
    • v.13 no.2
    • /
    • pp.38-43
    • /
    • 2001
  • 교량 하부구조 특히 교각 및 기초의 경우는 지반 또는 수중에 묻혀 있기 때문에 손상을 발견하기도 어렵고 또한 손상의 보수 및 보강이 곤란한 경우가 많다. 하부구조의 손상은 지반의 마모, 침하, 측방유동토압, 하상세굴, 홍수류, 선박 및 유하물에 의한 충격, 지진 등의 여러 원인에 의하여 발생된다. 이러한 손상은 지표수 및 지하수 배제공, 성토공, 지반개량공, 단면보수공, 세굴방지공, 내진보강공 등에 의하여 보수 및 보강이 행하여 진다. 본 고에서는 이러한 하부구조의 보수.보강공법 중 수중부에 실시되는 방법에 대하여 소개하고자 한다.

Strengthening method using externally-bonded steel frames for promoting the seismic performance of existing buildings (기존 건축물 내진성능 향상을 위한 철골 골조 외부부착 보강공법)

  • Mauk, Ji-Wook;Park, Young-Mi;Park, Ki-Hong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.98-99
    • /
    • 2018
  • Seismic retrofitting technologies have been paid attention to structural engineers for rehabilitations of existing building structures vulnerable to seismic loading conditions. This paper introduces the traditional strengtheing method applying externally-bonded steel frames to column and beam elements, and compares with the improved scheme using the frames with additional energy dissipation systems. Throughout experimental studies, it was observed that the method can be effective for promoting the seismic performance of seismic force-resisting systems by guaranteeing strong column-weak beam mechanism. Compared to the traditional manner, it was found that the new scheme can be more efficient for confirming capacity design concept, while energy dissipation systems can provide additional damping effects corresponding to lateral deformation which occurs at seismic force-resisting systems exposed to seismic excitations.

  • PDF