기상이변으로 인해 국지성 호우의 발생 증가와 그로 인한 수재해 피해가 증가하고 있다. 따라서 수재해를 사전에 예측하고 저감하기 위해 비구조물적 대책인 실시간 홍수예보시스템 개발 및 운영에 관한 연구들이 수행되고 있다. 일반적으로 홍수예보시스템은 대피선행시간 확보를 위해서 초단시간 혹은 단기 수치예보모델을 수문해석모형이나 예보기법의 입력으로 활용하고 있다. 초단시간 예측은 기상레이더를 기반으로 외삽, 이류, 셀 추적 등의 기법을 활용하여 0~3시간 이내의 강수예측을 수행한다. 그러나 역학이나 물리적 과정이 동반되지 못하여 0~ 2시간 이내에서의 예측성은 높은 반면, 예측시간이 길어질수록 예측력이 낮아진다. 단기수치예보모델은 종관관측에 의존하면서 역학이나 물리과정을 동반하므로 0~6시간 혹은 12시간 이상의 예측을 수행하지만, 수치모델의 고유특성인 스핀업 등의 예측 불확실성이 내재되어 있어 예측 초기시간에서의 예측력이 낮은 한계가 있다. 따라서 강수예측의 정확도 향상을 위해 레이더와 수치예보모델의 병합기법이 필요하다. 본 연구에서는 통계분석을 통해 경험적으로 산출된 시간적 가중치를 이용한 기존 병합기법의 한계를 극복하면서 호우에 따른 가변성을 반영하는 실시간 병합기법을 개발하고, 수문학적인 활용성을 평가하고자 하였다. 사용된 예측강우 자료는 레이더 기반인 MAPLE, KONOS, 공간규모분할 예측강우와 수치예보모델 기반인 UM와 ASAPS의 예측강우이며, 제시한 가중치 산정기법은 직전 예측강우의 오차가 현 시점의 예측강우의 오차와 유사하다는 가정하에 오차항을 포함한 과거 1시간 예측강우들간의 가중치 조합이 과거 지상관측강우와의 평균제곱근오차가 최소가 되도록 화음 탐색법을 이용하여 찾는 것이다. 가중치 조합은 예측강우의 생산 시간 간격을 고려하여 매 10분마다 산정하며, 미래 3시간 예측까지 산정된 가중치를 적용한다. 수도권 영역을 대상으로 병합된 예측강우와 레이더 관측강우를 비교한 결과, 정량적 정확도가 향상됨을 확인할 수 있었다. 또한, 예측강우의 수문학적 활용성은 도시유출해석모의를 통해 평가하였다. 그 결과, 병합된 예측강우로 모의된 수심이 관측수심과 유사하여 수문학적 활용성 확인할 수 있었다.
본 연구는 선행연구들과 달리 경제변수로 설명할 수 없는 경제주체들의 심리적 요소가 주가에 영향을 미칠 수 있다는 관점에서 주가와 거시경제변수 및 경제주체들의 기대심리간의 장기 균형 및 동학구조관계를 분석한다. 주가는 기업의 내재가치를 나타내며 이는 상당부분 현재와 미래의 경제상황에 의해 영향을 받을 것이다. 미래경제상황을 정확히 예측할 수는 없으나 경제 주체들은 미래경제상황을 예측하게 되며 그 예측은 주가에 반영될 수 있다. 검증결과 BSI 전망치와 같은 경제주체들의 기대심리가 주가결정에 가장 중요한 단일 변수인 것으로 나타났다. 이변량 공적분검증을 실시한 결과 실질주가지수는 BSI와 장기균형관계에 있는 반면 다른 거시경제변수와는 공적분관계에 있지 않은 것으로 나타났다. 다변량 공적분분석에서도 BSI가 포함된 경우에만 KOSPI/P와 장기균형관계에 있는 것으로 나타났다. 벡터오차수정모형으로 동태적 관계를 분석한 결과, 이변량과 다변량 분석 모두에서 이들 두 변수의 오차수정항이 통계적으로 유의하여 장기균형으로부터 이탈에 대하여 상호 조정하는 것으로 나타났다.
S&P 500과 RUSSELL 2000, DJIA, Nasdaq 100 4가지 미국 주가지수의 실현변동성(realized volatility, RV)을 예측하는데 있어서 사람들의 관심 지표로 삼을 수 있는 인터넷 검색량(search volume, SV) 지수와 내재변동성(implied volatility, IV)를 이용하여 LSTM 딥러닝(deep learning) 방법으로 RV의 예측력을 높이고자하였다. SV을 이용한 LSTM 방법의 실현변동성 예측력이 기존의 기본적인 vector autoregressive (VAR) 모형, vector error correction (VEC)보다 우수하였다. 또한, 최근 제안된 RV와 IV의 공적분 관계를 이용한 vector error correction heterogeneous autoregressive (VECHAR) 모형보다도 전반적으로 예측력이 더 높음을 확인하였다.
화학공정에서의 안전하고 최적화된 조작과 내재되어 있는 화재 및 폭발 위험성 평가를 위해서 연소 특성치를 알아야 한다. 폭발한계는 가연성물질의 화재 및 폭발위험성을 결정하는데 주요한 특성치 가운데 하나이다. 본 연구에서, 에스테르류의 폭발하한계와 상한계에 대해 연소열을 이용하여 예측하였다. 제시된 예측식에 의한 예측값은 문헌값과 적은 오차범위에서 일치하였다. 제시된 방법론을 사용하여 다른 가연성 에스테르류의 폭발한계 예측이 가능해졌다.
화학공정에서의 안전하고 최적화된 조작과 내재되어 있는 화재 및 폭발 위험성 평가를 위해서 연소 특성치를 알아야 한다. 폭발한계는 가연성물질의 화재 및 폭발위험성을 결정하는데 주요한 특성치 가운데 하나이다 본 연구에서, 알코올류의 폭발한계에 대해 용액론을 근거로 표준끓는점과 인화점을 이용하여 예측하였다. 제시된 예측식에 의한 예측값은 문헌값과 적은 오차범위에서 일치하였다. 제시된 방법론을 사용하여 다른 가연성 물질의 폭발한계 예측이 가능해졌다.
본 논문은 칼만필터를 이용한 ZMP의 다음 상태 예측을 통한 새로운 이족로봇의 균형제어기법을 제안한다. 일반적으로 이족로봇의 동역학 모델은 3D-LIPM(3D-Linear Inverted Pendulum Mode)에 의해 수학적으로 근사화되지만, 이는 로봇의 동역학적 특성을 완벽하게 표현할 수 없다. 이족로봇의 안정성은 ZMP(Zero Moment Point) 위치가 안정영역에 존재하는 경우에 안정성이 보장된다. 그리고 로봇 구조와 그 모델 사이의 내재된 오차는 로봇의 안정성에 영향을 끼칠 수 있다. 그러므로 본 논문에서 제안하는 균형제어기법은 내부 오차를 줄일 수 있으며, 적절한 로봇의 제어가 가능하다. 제안된 균형제어기법의 실험은 다양한 상황을 포함한 가상의 공간상에서 모의실험 되었다.
선형모형에서 두개 이상의 설명변수들 사이에 존재하는 다중공선성 문제를 변수들 간에 내재되어 있는 공통의 구조인 인자를 구성하고, 인자들을 회귀변수로 사용하여 해결하는 인자회귀모형에 대하여 논의한다. 무한개로 가정 가능한 내재된 인자 중 유의미한 인자적재행렬을 구성하기 위하여 벌점모수의 값이 큰 LASSO 사전분포를 적용하는 베이지안 추정법을 사용한다. 결정된 인자적재행렬과 다른 모수들의 추정값을 각 설명변수의 선형모수로 역변환 하여, 새로운 관측값에 대한 예측 모형으로도 사용한다. 제안한 방법을 제품 서비스 관리 자료에 적용하여 정해진 인자의 개수에 대한 인자가 일반적인 공통인자회귀모형과 동일한 결과를 나타냄을 확인하였고, 일반적인 공통인자회귀모형과 비교를 위해 계산한 평균 제곱 오차값이 더 작다는 것을 알 수 있었다.
로지스틱 회귀모형에서 suppression의 논의는 선형회귀의 논의보다 많지 않은데 그 이유 중의 하나는 회귀제곱합 또는 결정계수의 정의가 유일하지 않고 다양하기 때문이다. 여러 종류의 결정계수들 중에서 선호되는 두 종류의 결정계수와 Liao와 McGee(2003)가 제안한 두 종류의 수정 결정계수의 정의로부터 회귀제곱합을 유도하여 로지스틱 회귀모형에서의 suppression을 설명하고자 한다. 모의실험을 통하여 자료를 생성하여 어떤 경우에 suppression이 발생하는지를 살펴보고 그 결과를 선형회귀모형에서의 suppression 결과와 비교한다.
화학공정에서 안전하고 최적화된 조작과 내재되어 있는 화재 및 폭발 위험성 평가를 위해서는 연소특성치를 알아야 한다 폭발한계, 연소열, 화염온도, 폭발한계의 온도의존성은 가연성물질의 화재 및 폭발위험성을 결정하는데 중요한 연소특성치이다. 본 연구의 목적은 알킬케톤에 대한 연소특성치들의 상관관계와 폭발하한계의 온도의존성 고찰에 있다. 문헌자료를 이용하여 알킬케톤의 폭발특성치간의 상관관계를 묘사하는 경험식을 제시하였다. 또한 폭발하한계의 온도의존성을 예측위해 통계적 및 수학적 방법을 사용하여 새로운 식을 제시하였다. 제시된 예측식에 의한 예측값은 문헌값과 적은 오차범위에서 일치하였다. 제시된 방법론을 사용하여 다른 가연성 물질의 폭발한계 예측이 가능해졌다.
하천의 오염부하량 관리 계획은 지속적인 모니터링을 통한 자료 구축과 모형을 이용한 예측결과를 기반으로 수립된다. 하천의 모니터링과 예측 분석은 많은 예산과 인력 등이 필요하나, 정부의 담당 공무원 수는 극히 부족한 상황이 일반적이다. 이에 정부는 전문가에게 관련 용역을 의뢰하지만, 한국과 같이 지형이 복잡한 지역에서의 오염부하량 배출 특성은 각각 다르게 나타나기 때문에 많은 예산 소모가 발생 된다. 이를 개선하고자, 본 연구는 합성곱 신경망 (convolution neural network)과 수문학적 이미지 (hydrological image)를 이용하여 강우 발생시 BOD 및 총인의 부하량 예측 모형을 개발하였다. 합성곱 신경망의 입력자료는 일반적으로 RGB (red, green, bule) 사진을 이용하는데, 이를 그래도 오염부하량 예측에 활용하는 것은 경험적 모형의 전제(독립변수와 종속변수의 관계)를 무너뜨리는 결과를 초래할 수 있다. 이에, 본 연구에서는 오염부하량이 수문학적 조건과 토지이용 등의 변수에 의해 결정된다는 인과관계를 만족시키고자 수문학적 속성이 내재된 수문학적 이미지를 합성곱 신경망의 훈련자료로 사용하였다. 수문학적 이미지는 임의의 유역에 대해 2차원 공간에서 무차원의 수문학적 속성을 갖는 grid의 집합으로 정의되는데, 여기서 각 grid의 수문학적 속성은 SCS 토양보존국(soil conservation service, SCS)에서 발표한 수문학적 토양피복형수 (curve number, CN)를 이용하여 산출한다. 합성곱 신경망의 구조는 2개의 Convolution Layer와 1개의 Pulling Layer가 5회 반복하는 구조로 설정하고, 1개의 Flatten Layer, 3개의 Dense Layer, 1개의 Batch Normalization Layer를 배열하고, 마지막으로 1개의 Dense Layer가 연결되는 구조로 설계하였다. 이와 함께, 각 층의 활성화 함수는 정규화 선형함수 (ReLu)로, 마지막 Dense Layer의 활성화 함수는 연속변수가 도출될 수 있도록 회귀모형에서 자주 사용되는 Linear 함수로 설정하였다. 연구의 대상지역은 경기도 가평군 조종천 유역으로 선정하였고, 연구기간은 2010년 1월 1일부터 2019년 12월 31일까지로, 2010년부터 2016년까지의 자료는 모형의 학습에, 2017년부터 2019년까지의 자료는 모형의 성능평가에 활용하였다. 모형의 예측 성능은 모형효율계수 (NSE), 평균제곱근오차(RMSE) 및 평균절대백분율오차(MAPE)를 이용하여 평가하였다. 그 결과, BOD 부하량에 대한 NSE는 0.9, RMSE는 1031.1 kg/day, MAPE는 11.5%로 나타났으며, 총인 부하량에 대한 NSE는 0.9, RMSE는 53.6 kg/day, MAPE는 17.9%로 나타나 본 연구의 모형은 우수(good)한 것으로 판단하였다. 이에, 본 연구의 모형은 일반 ANN 모형을 이용한 선행연구와는 달리 2차원 공간정보를 반영하여 오염부하량 모의가 가능했으며, 제한적인 입력자료를 이용하여 간편한 모델링이 가능하다는 장점을 나타냈다. 이를 통해 정부의 물관리 정책을 위한 의사결정 및 부족한 물관리 분야의 행정력에 도움이 될 것으로 생각된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.