• Title/Summary/Keyword: 내부 강관

Search Result 138, Processing Time 0.026 seconds

Study on Local Buckling of District Heating Pipes Using Limit State Design (한계상태 설계법을 이용한 지역난방 열배관의 국부좌굴 연구)

  • Kim, Joo-Yong;Lee, Sang-Youn;Ko, Hyun-Il;Cho, Chong-Du
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.12
    • /
    • pp.1829-1836
    • /
    • 2010
  • The district heating system distributes the heat generated from a cogeneration plant to wider locations. In this process, the district heating pipe (DHP) is subjected to internal and external loadings. The internal loadings are generally caused by the operating conditions such as water temperature and internal pressure. Frictional interactions between the pipes and the soil contribute to the external loadings. Thus, investigation of the mechanisms of failure of DHPs will help to guarantee both mechanical stability and heating efficiency. In this study, we investigate the local buckling of DHPs using limit state design (LSD). Two methods are considered: the use of the limit state for the width-thickness ratio and the use of the limit state for the strain. The results are used to confirm that the DHP is stable under local buckling. Finally, we suggest a minimum preheating temperature for avoiding local buckling.

Surfactant-Induced Suppression of the Thermocapillary Flow in Evaporating Water Droplets (증발하는 물방울의 계면활성제에 의한 열모세관 유동 억제)

  • Yun, Sungchan;Kim, Tae Kwon;Lim, Hee Chang;Kang, Kwan Hyoung;Lim, Geunbae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.7
    • /
    • pp.695-701
    • /
    • 2013
  • The suppression of a thermocapillary flow (Marangoni flow) by a nonionic surfactant is experimentally investigated for evaporating pure water droplets on hydrophobic substrates. The experiment shows that as the initial concentration of the surfactant increases, the velocity and lifetime of the flow monotonically decrease. The result confirms the no-slip boundary condition at a liquid-air interface, which is explained on the basis of the previous model regarding the effect of surfactants on the no-slip condition. Interestingly, at an initial concentration much less than a critical value, it is found that depinning of the contact line occurs during the early stage of evaporation, which is ascribed to a reduction in the contact angle hysteresis owing to the presence of the Marangoni flow.

Experimental Study of the Fire Behavior of CFT Columns in Relation to the Sectional Shape & Size (단면형상 및 크기에 따른 콘크리트 충전강관(CFT) 기둥의 화재거동에 관한 실험적 연구)

  • Cho, Bum-Yean;Kim, Heung-Youl;Kwon, Ki-Seok;Yang, Seung-Cho
    • Fire Science and Engineering
    • /
    • v.31 no.2
    • /
    • pp.9-16
    • /
    • 2017
  • In this study, fire resistance tests were conducted to evaluate the fire resistance performance of unprotected and non-welded CFT columns in relation to the shape and size of cross-sections. Unprotected slot-type CFT columns which were ${\square}300$ and ${\square}500$ in dimensions resisted fire for 125 minutes and more than 180 minutes, respectively. Strain analysis showed that slot-type CFT columns were more ductile than welded CFT columns. The temperatures of central parts measured when welded CFT columns and slot-type CFT columns had lost fire resistance performance were higher in the former than the latter. Therefore, slot connection does not a great influence on the temperatures inside the concrete.

Proper Regulation of the Cutoff System in Offshore Landfill Built on Clay Ground with Double Walls (점토지반에 이중벽체가 적용된 해상폐기물매립장의 적정 차수 기준)

  • Hwang, Woong-Ki;Kim, Hyang-Eun;Choi, Hoseong;Kim, Tae-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.8
    • /
    • pp.5-15
    • /
    • 2019
  • This study was conducted to propose a reasonable requirement regulation of cutoff barriers composed of bottom layer and vertical barrier of offshore landfill for the prevention of contaminant leakage. The bottom layer was composed of impermeable clay layer; vertical walls were composed of double walls; outer wall was composed of steel sheet pile which registed against outer force; cutoff vertical barrier took the role of inner wall. Seepage-advection-dispersion numerical analysis was conducted using SEEP/W and CTRAN/W programs under steady and unsteady flows. The results showed that the values calculated under steady flow showed higher migration of pollutant than those of unsteady flow. The values calculated under steady flow are more valid from a design point of view. Under steady flow and the bottom clay layer and when the vertical barrier are homogeneous and completely well installed, respectively, the minimum required cutoff regulations for hydraulic conductivity, thickness, and embedded depth of the bottom clay layer and vertical barrier were suggested.

Advanced C.I.P Method to Use the Steel-Casing with Inner Joint (조인트 부착 강관 케이싱을 이용한 개량형 C.I.P 공법)

  • Jang, Seoyong;Choi, Jaesoon;Song, Byungwoong;Choi, Yoonyoung;Yoon, Joongsan
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.2
    • /
    • pp.95-102
    • /
    • 2012
  • In this study, practical verifications for an advanced C.I.P(Cast in Place Pile) construction method were carried out. The structural characteristics of the method is to attach an angular joint in the steel-casing. This joint plays an important role in boring vertically, connected pile to pile, and protects the permeation of the ground water. For verifications, experimental research and numerical analysis were performed. In the experimental research, two model-tests were set up with the real scale steel-casing. One is to examine the leakage in the joint of piles and the other is to compare earth pressures in the front and the joint, respectively. In addition, 3 point bending test and compressive loading test were carried out and numerical analysis was performed to simulate the loading test. As a result of model-tests, the leakage in the pile joints was not shown up to 300 KPa of water pressure and stress concentration in the joint is out of the question. From the results of bending and compressive test, it was found that the new advanced C.I.P method is more convenient and superior than the conventional method.

Evaluation of Suction Installation for the Circular Pipe into Low-water Sandy Ground via Model Test (모형실험을 활용한 저수심 사질토 지반에서 원형강관 설치 석션압 평가)

  • Xin, Zhen-Hua;Kim, Jae-Hyun;Lee, Ju-Hyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.1-10
    • /
    • 2021
  • In this study, a circular pipe can be installed by suction pressure for construction on soft ground with a low-water level. A series of laboratory-scale model tests were conducted in sandy ground to comprehend the suction pressure of the circular pipe in low-water levels. For repeated tests on saturated sandy soil, a container was mounted with three vibration generators on the floor. A repetitive vibration was applied using the vibration system for ground compaction. In the model tests, different diameters and thicknesses on saturated sandy soil with a water depth were considered. The result showed that the suction pressure increased with increasing penetration depth of the circular pipe. Moreover, the suction pressure required to penetrate the pipe decreased with increasing diameter. In the low-water level, the total suction pressure measured at the top lid increased because additional suction pressure is required to lift the water column. On the other hand, this led to a decrease in suction pressure to penetrate the circular pipe because the weight of the water column is applied as a dead load. Therefore, it is necessary to consider the water level to design the required suction pressure accurately.

A Study on the Frictional Characteristics of Fiber Reinforced Composites under Corrosive Environment (부식 환경 하에서의 섬유강화복합재료의 마찰 및 마모 특성 연구)

  • Choong-Yong Park;Dong-Hyun Park;Soo-Jeong Park;Yun-Hae Kim
    • Composites Research
    • /
    • v.36 no.1
    • /
    • pp.37-41
    • /
    • 2023
  • The treated water inside the ballast electrolytic cell creates a highly alkaline atmosphere due to hydroxide generated at the DSA(Dimension Stable Anode) electrode during electrolysis. In this study, a composite material that can replace the weakness of the PE-coated steel pipe used in the existing ballast pipe was prepared. The test samples are BRE(Basalt fiber reinforced epoxy), BRP(Basalt fiber reinforced unsaturated polyester), GRE(Glass fiber reinforced epoxy), and GRP(Glass fiber reinforced unsaturated polyester). And then it was immersed in NaOH for 720 hours. The friction test of each specimen was conducted. The Friction coefficient analysis according to material friction depth and interfacial adhesion behavior between resin and fiber were analyzed. As a result, the mechanism of interfacial separation between resin and fiber could be analyzed. In the case of the unsaturated polyester resin with low interfacial bonding strength the longer the immersion time in the alkaline solution, the faster the internal deterioration caused by the deterioration that started from the surface, resulting in a decrease in the friction coefficient. It is hoped that this study will help to understand the degradation behavior of composite materials immersed in various chemical solutions such as NaOH, acid, and sodium hypochlorite in the future.

Analysis of Structural Safety of the Welded Pipe Columns Adopted in Paprika Greenhouse (파프리카 재배용 온실에서 용접 파이프 기둥재의 구조적 안전성 검토)

  • Suh, Won-Myung;Choi, Man-Kwon;Im, Jae-Un;Kwon, Sun-Ju;Kim, Hyeon-Tae;Kim, Young-Ju;Yoon, Yong-Cheol
    • Journal of agriculture & life science
    • /
    • v.45 no.2
    • /
    • pp.125-133
    • /
    • 2011
  • This study was conducted on greenhouses whose side heights had been raised after the columns of 1-2W basic type greenhouses had been cut and welding with the same-sized pipes. When the wind load or snow load affects restructured pipe greenhouse like this, those parts will be structurally unsafe. To examine this, the bending strength of welded columns were measured through four stages and compared with the pipes in their original condition. Results are as follows. In the case of a bending test on welded joints about steel pipes used for greenhouses, satisfactory results couldn't be drawn because sections of both ends and the loading parts couldn't endure loads and sank regardless of loading methods. Partial problems could be solved by inserting inside pipe(steel bar) at the sections and the loading parts, but it was necessary to devise more satisfactory bending test methods. The strength of welded joints wasn't much different compared with original conditions and demonstrated only slight differences according to the sample production conditions. However, significant incompleteness in the welding process was expected to cause a decisive loss in strength. On the assumption that there were no problems in the welding process or with regard to the inclination of sub materials for columns after connection, it was deemed reasonable to assume that the strength of welded pipes was about 84~90% of the strength of the pipes in their original condition. Considering mid- and long-term strength decline following the onset of rust at joints or welding sections, structural changes in the main sub materials that are used for greenhouses at farmhouses have to be avoided to ensure structural safety, unless these changes are inevitable.

Structural Capacity Evaluation of Hybrid Precast Concrete Beam-Column Connections Subjected to Cyclic Loading (반복하중을 받는 하이브리드 프리캐스트 보-기둥 접합부의 성능평가)

  • Choi, Hyun-Ki;Yoo, Chang-Hee;Choi, Yun-Cheul;Choi, Chang-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.325-333
    • /
    • 2010
  • In this study, new moment-resisting precast concrete beam-column joint made up of hybrid steel concrete was developed and tested. This beam-column joint is proposed for use in moderate seismic regions. It has square hollow tubular section in concrete column and connecting plate in precast U-beam. The steel elements in column and beam members were connected using bolt. Furthermore, in order to prevent the premature failure of concrete in hybrid steel-concrete connection, ECC(engineered cementitious composite) was used. An experimental study was carried out investigating the joint behavior subjected to reversed cyclic loading and constant axial compressive load. Two precast beam-column joint specimens and monolithic reinforced concrete joint specimen were tested. The variables for interior joints were cast-in-situ concrete area and transverse reinforcement within the joint. Tests were carried out under displacement controlled reverse cyclic load with a constant axial load. Joint performance is evaluated on the basis of connection strength, stiffness, energy dissipation, and displacement capacity. The test results showed that significant differences in structural behavior between the two types of connection because of different bonding characteristics between steel and concrete; steel and ECC. The proposed joint detail can induce to move the plastic hinge out of the ECC and steel plate. And proposed precast connection showed better performance than the monolithic connection by providing sufficient moment-resisting behavior suitable for applications in moderate seismic regions.

Safety Management of Steel Pipe Scaffold using UAV (무인항공기(UAV)를 활용한 건설현장 가시설물 안전관리)

  • Jun, Byong-Hee;Kim, Nam-Gyun;Jun, Kyo-Won;Choi, Bong-Jin
    • Journal of Korean Society of Disaster and Security
    • /
    • v.12 no.3
    • /
    • pp.59-67
    • /
    • 2019
  • In this study, the UAV (Unmammed Aerial Vehicle) was applied for the photogrammetry of the construction site and the safety management of steel pipe scaffold. The research site is a temporary facility for building reinforcement on Samcheok Campus of Kangwon National University. The installation condition of the steel pipe scaffold was investigated, and the pillar distance, the beam distance and the wale distance were surveyed. As a result, it was found that the beam distance of the scaffold in the longitudinal direction was in good agreement with the standard, but the pillar distance and the wale distance were found to be less than the standard. Three-dimensional data can be used in drone shooting to enable three-dimensional measurement, so that it is possible to measure facilities hidden or located inside other facilities. Through the drone shooting, the condition of the site can be quickly recorded and the surveying can be carried out without interfering with the work of the field personnel. Although the installation of the temporary structure must be strictly observed to ensure the safety of the workers, it is found that the installation standards are still neglected in the field. In order to prevent this practice, it was thought that the legal system should be supplemented so that it could be checked periodically by using UAV in the field process management.