• Title/Summary/Keyword: 내부기류

Search Result 60, Processing Time 0.024 seconds

Prediction of Pressure Drop Using the Internal Flow Simulation of Pulse Air Jet Bag Filters (충격기류식 여과집진기의 내부 유동 시뮬레이션 해석을 통한 압력손실 예측)

  • Jang, Kyeong-Min;Jung, Eun-Sang;Suh, Jeong-Min
    • Journal of Environmental Science International
    • /
    • v.29 no.5
    • /
    • pp.457-468
    • /
    • 2020
  • With continuous industrial development, the types, and amount of particulate matter (PM) have been increasing. Since 2018, environmental standards regarding PM have become more stringent. Pulse air jet bag filters are suitable for PM under the 20 ㎛ and, can function regardless of size, concentration and type. Filtration velocity and shape are important factors in the operation and design of the pulse air jet bag filters however, few established studies support this theory. In this research, numerical simulations were conducted based on experimental values and, several methods were employed for minimizing the pressure drop. In the pilot system, as the inlet duct velocity was faster than 19 m/sec, flow was not distributed equally and, re-entrainment occurred due to the hopper directional vortex. The multi-inlet system decelerated the hopper directional vortex by 25 ~ 30%, thereby decreasing total pressure drop by 6.6 ~ 14.7%. The guide vane system blocked the hopper directional vortex, which resulted optimal vane angle of 53°. The total pressure of the guide vane system increased by 0.5 ~ 3% at 1.5 m/min conditions. However, the filtration pressure drop decreased by 4.8 ~ 12.3% in all conditions, thereby reducing the operating cost of filter bags.

Development of Tunnel-Environment Monitoring System and Its Installation III -Measurement in Solan Tunnel- (터널 환경 측정 시스템 개발 및 측정 III -솔안터널 측정결과 분석-)

  • Park, Won-Hee;Cho, Youngmin;Kwon, Tae-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.637-644
    • /
    • 2016
  • This paper is a follow-up to previous papers entitled, "Development of Tunnel-Environment Monitoring System and Its Installation" I [1] and II [2]. The target tunnel of these studies is the Solan Tunnel, which is a loop-type, single-track, 16.7-km-long tunnel located in mountainous terrain and passing through the Baekdudaegan mountain range. It is an ordinary railway tunnel designed for both freight and passenger trains. We analyzed the environmental conditions of the tunnel using temperature and humidity data recorded over approximately one year. The data were recorded using the Tunnel Rough Environment Measuring System (TREMS), which measures environmental data in subway and high-speed train tunnels and is installed in three locations inside the tunnel. Previous studies analyzed environmental conditions inside tunnels located in or near a city, whereas the tunnel in this study is located in a mountainous area. The tunnel conditions were compared with those measured outside the tunnel for each month. Hourly changes during summer and winter periods were also analyzed, and the environmental conditions at different locations inside the tunnel were compared. The results are widely applicable in studies on the thermal environment and air quality of tunnels, as well as for computer analysis of tunnel airflow such as tunnel ventilation and fire simulations.

A study on the improvement of the air exhaust system at the PSD installed subway station (도시철도 지하역사 PSD 설치에 따른 배기시스템 개선 연구)

  • Kwon, Soon-Bark;Song, Ji-Han;Ryu, Ju-Hwan;Jo, Seung-Won;Oh, Tae-Suk;Bae, Sung-Joon;Kim, Hyo-Gyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.3
    • /
    • pp.353-362
    • /
    • 2015
  • Platform screen door (PSD) installed at underground subway station has reduced the safety accident, but it may cause poor air ventilation condition due to the isolated exhaust duct in the subway tunnel area. In this study, the additional ventilation system was suggested, which can be installed at a void space (i.e., storage room under stairs) of platform in order to improve efficiency of air ventilation rate. Exhausted air from platform was directed to underneath of platform and joined with existing ventilation duct of train exhaust system (TES). One subway station in Seoul city was selected to predict the effectiveness of the suggested lower exhaust system by using the computational fluid dynamics (CFD) analysis. The predicted mean age of air was decreased by 16.5% which proves the improvement of air ventilation efficiency when the suggested lower exhaust system was applied.

Numerical analysis study on the concentration change at hydrogen gas release in semi-closed space (수치해석을 통한 반밀폐공간 내 수소가스 누출 시 농도변화에 관한 연구)

  • Baek, Doo-San;Kim, Hyo-Gyu;Park, Jin-Yuk;Yoo, Yong-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.1
    • /
    • pp.25-36
    • /
    • 2021
  • Hydrogen in hydrogen-electric vehicles has a wide range of combustion and explosion ranges, and is a combustible gas with a very fast flame propagation speed, so it has the risk of leakage, diffusion, ignition, and explosion. The fuel tank has a Thermally active Pressure Relief Device (TPRD) to reduce the risk of explosion and other explosions, and in the event of an accident, hydrogen inside the tank is released outside before an explosion or fire occurs. However, if an accident occurs in a semi-closed space such as an underground parking lot, the flow of air flow is smaller than the open space, which can cause the concentration of hydrogen gas emitted from the TPRD to accumulate above the explosion limit. Therefore, in this study, the leakage rate and concentration of hydrogen over time were analyzed according to the diameter of the nozzle of the TPRD. The diameter of the nozzle was considered to be 1 mm, 2.5 mm and 5 mm, and ccording to the diameter of the nozzle, the concentration of hydrogen in the underground parking lot increases in a faster time with the diameter of the nozzle, and the maximum value is also analyzed to be larger with the diameter of the nozzle. In underground parking lots where air currents are stagnant, hydrogen concentrations above LFL (Lowe Flammability Limit) were analyzed to be distributed around the nozzle, and it was analyzed that they did not exceed UFL (Upper Flammability Limit).

A Study on the Ignition Behaviors of Textiles according to Permeation Amount of Oils and Aeration (유지류의 침윤량과 공기주입에 따른 면화류의 발화거동에 관한 연구)

  • 오치훈;이창우;김정환;현성호
    • Fire Science and Engineering
    • /
    • v.14 no.1
    • /
    • pp.8-12
    • /
    • 2000
  • We had investigated thermal and ignition behaviors of textiles. Decomposition of textiles with temperature was investigated using a DSC and the weight loss according to temperature using a TGA in order to find the thermal hazard of textiles, and the ignition behaviors of textiles according to species and permeation amount of oil. In addition, ignition behaviors of those permeated into oils indicating different iodine value and of those with arid without air in reaction vessel of measuring equipment were studied with constant temperature method among ignition temperature measuring methods. As results, the range of decomposition temperature of synthetic fiber was slightly broad compared with that of natural fiber, pure cotton. Besides, the initiation temperature of heat generation of both samples riced in the case of no air injection in the reaction vessel. On the other hand, in the case of air injection that was lowered according to the increase in permeative amount of oils and fats and decreased quickly as sample was permeated into drying oil.

  • PDF

Numerical Study on Air Egress Velocity in Vestibule Pressurization System : Characteristics of Air Flow in the Vestibule with Multiple Fire Doors in an Apartment Building (부속실 가압 시스템의 방연풍속에 관한 수치해석적 연구: 공동주택 부속실내에 다수 출입문의 존재시 기류특성)

  • Seo, Chanwon;Shin, Weon Gyu
    • Fire Science and Engineering
    • /
    • v.28 no.5
    • /
    • pp.30-36
    • /
    • 2014
  • The pressurized smoke control system in the vestibule is important for fire safety in buildings because it is concerned with egress time of people and the safety of fire fighters. The vestibule pressurization system can prevent smoke from entering the vestibule using differential pressure when fire doors are closed and using the egress velocity when fire doors are open. Air supplying units in the vestibule need to be arranged by taking account of the location of doors and the volume of the vestibule in order to assure the uniform air egress velocity through a fire door when it is open. In this study, computational fluid dynamics (CFD) simulations were conducted for the vestibule where multiple doors are installed and it was found that the reverse flow occurs when the damper position in vestibule is not appropriate.

An Experimental Study on the Comparison of Operating Temperatures in Thermal Detector due to Tunnel Fire (터널 화재 시 열감지기 작동 온도의 비교에 관한 실험적 연구)

  • Roh, Hyeong-Ki;Park, Kwang-Young;Im, Seok-Been
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.1
    • /
    • pp.23-27
    • /
    • 2011
  • Due to the rapid development of construction technology with effective land utilization in this nation, many tunnels were and are being built across the country. However, the smoke and the heat generated from tunnel fire are the most important critical factors which may results in both massive personal injury and property damage, especially, due to the closed surrounding of the tunnel. Considering this particular nature of the tunnels, this study aims to install a fire detection system using an optic fiber cable to measure the temperature changes, compare, and analyze the resulted values with the times of temperature changes of the sensor by performing fire simulations under the same condition as a real fire test. From the results, it has been found that the temperature sensor detects a fire occurrence and generates an alarm within one minute after ignition for both a real fire test and a fire simulation alike, and also that the characteristics of temperature changes of the sensor has close relations with the speeds of the currents inside the tunnel. In addition, considering the tunnel fires can affect the evacuation efficiency and the fire extinguishing activities of the fire brigade inside the tunnel, the temperature sensor must be able to search and find the locations and directions of the fires correctly.

Improvement of Energy Efficiency of Plants Factory by Arranging Air Circulation Fan and Air Flow Control Based on CFD (CFD 기반의 순환 팬 배치 및 유속조절에 의한 식물공장의 에너지 효율 향상)

  • Moon, Seung-Mi;Kwon, Sook-Youn;Lim, Jae-Hyun
    • Journal of Internet Computing and Services
    • /
    • v.16 no.1
    • /
    • pp.57-65
    • /
    • 2015
  • As information technology fusion is accelerated, the researches to improve the quality and productivity of crops inside a plant factory actively progress. Advanced growth environment management technology that can provide thermal environment and air flow suited to the growth of crops and considering the characteristics inside a facility is necessary to maximize productivity inside a plant factory. Currently running plant factories are designed to rely on experience or personal judgment; hence, design and operation technology specific to plant factories are not established, inherently producing problems such as uneven crop production due to the deviation of temperature and air flow and additional increases in energy consumption after prolonged cultivation. The optimization process has to be set up in advance for the arrangement of air flow devices and operation technology using computational fluid dynamics (CFD) during the design stage of a facility for plant factories to resolve the problems. In this study, the optimum arrangement and air flow of air circulation fans were investigated to save energy while minimizing temperature deviation at each point inside a plant factory using CFD. The condition for simulation was categorized into a total of 12 types according to installation location, quantity, and air flow changes in air circulation fans. Also, the variables of boundary conditions for simulation were set in the same level. The analysis results for each case showed that an average temperature of 296.33K matching with a set temperature and average air flow velocity of 0.51m/s suiting plant growth were well-maintained under Case 4 condition wherein two sets of air circulation fans were installed at the upper part of plant cultivation beds. Further, control of air circulation fan set under Case D yielded the most excellent results from Case D-3 conditions wherein air velocity at the outlet was adjusted to 2.9m/s.

A Study on the Determination of the Seasonal Heat Transfer Coefficient in KURT Under Forced Convection (강제대류시 계절에 따른 KURT 내 열전달계수 결정에 관한 연구)

  • Yoon, Chan-Hoon;Kwon, Sang-Ki;Hwang, In-Phil;Kim, Jin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.3
    • /
    • pp.189-199
    • /
    • 2010
  • In a high-level waste (HLW) repository, heat is generated by the radioactive decay of the waste. This can affect the safety of the repository because the surrounding environment can be changed by the heat transfer through the rock. Thus, it is important to determine the heat transfer coefficient of the atmosphere in the underground repository. In this study, the heat transfer coefficient was estimated by measuring the indoor environmental factors in the Korea Atomic Energy Research Institute Underground Research Tunnel (KURT) under forced convection. For the experiment, a heater of 5 kw capacity, 2 meters long, was inserted through the tunnel wall in the heating section of KURT in order to heat up the inside of the rock to $90^{\circ}C$, and fresh air was provided by an air supply fan connected to the outside of the tunnel. The results showed that the average air velocity in the heating section after the provision of the air from outside of the tunnel was 0.81 m/s with the Reynolds number of 310,000~340,000. The seasonal heat transfer coefficient in the heating section under forced convection was $7.68\;W/m^2{\cdot}K$ in the summer and $7.24\;W/m^2{\cdot}K$ in the winter.

An experimental study on the smoke-spread region before reaching the critical velocity for the case of fires in tunnels employing longitudinal ventilation system (종류식 환기 시스템에서 임계속도 도달 전 스모크 확산 영역에 관한 실험적 연구)

  • Ki, Young-Min;Yoon, Sung-Wook;Yoon, Chan-Hoon;Kim, Jin
    • Tunnel and Underground Space
    • /
    • v.16 no.6 s.65
    • /
    • pp.526-535
    • /
    • 2006
  • An experimental study was carried out on a reduced scale tunnel model to grasp the behavioral feature of fire-induced smoke in the long tunnels. Based on Froude modeling, the 1/50 scaled tunnel model (20 m long) was constructed by acrylic tubes and paraffin gas was released inside the tunnel to simulate the 20 MW fire-induced smoke. me test results show, that after approximately 2 minutes of fire generation, was descended from the tunnel ceiling through the decrease of buoyancy, then it was symmetrically propagated about 90 meters for 4 minutes before jet fans were operated. The smoke was effectively controlled when the jet fans were operated and an air stream velocity was getting closed to reach a critical velocity (the minimum air velocity that requires to suppress the smoke spreading against the longitudinal ventilation flow during the tunnel fire situations). It was also found out that a range of smoke was spreaded about 3 meters from the origin of fire but the range was not propagated to the escape direction anymore. The early stage of the In operation, however, showed that the smoke was hardly controlled. It means that the operation of emergency ventilation system has many dangerous factors such as an intercepting breathing zone.