• Title/Summary/Keyword: 내부개질

검색결과 108건 처리시간 0.022초

메탄/합성가스 혼합물에 의한 발전용 SI 가스엔진의 성능에 관한 연구 (Study on the Performance of a Spark Ignition Gas Engine for Power Generation fueled by the Methane/Syngas Mixture)

  • 차효석;허광범;송순호
    • 한국가스학회지
    • /
    • 제19권5호
    • /
    • pp.7-12
    • /
    • 2015
  • 현재까지 수소는 주로 천연가스의 연료 개질에 의해 발생된 합성가스를 이용해 생산된다. 합성가스 내의 수소 수율을 높이기 위해선 추가적인 공정이 필요하다. 하지만, 수소의 수율 향상을 위한 공정에는 별도의 에너지원과 경제적 비용이 수반된다. 그러므로 보다 효율적으로 합성가스를 활용하기 위해 그 자체로 혼합물로 이용하는 방법에 관한 관련 연구들이 이루어지고 있다. 본 연구에서는 30kW급 발전용 스파크 점화 가스엔진에서 메탄/합성가스 혼합물이 엔진의 주요 성능에 미치는 영향을 조사하였다. 그 결과 메탄/합성가스 혼합물에 의해서 최대 실린더 내부 압력과 그 때의 크랭크 각도와 같은 엔진 내 연소 현상은 개선되는 것으로 나타났다. 이를 통해 메탄-합성가스 혼합물의 연료 전환 효율은 메탄-수소 혼합물의 약 98% 수준으로 향상시킬 수 있고 질소산화물 배출량은 메탄-수소 혼합물의 약 12%만큼 감소시킬 수 있다.

반응속도 분석을 통한 돈분의 탄화 온도 적정범위 평가 (Evaluation on Adequate Range of Carbonization Temperature using Swine Manure through Reaction Kinetics)

  • 최형진;이승희
    • 자원리싸이클링
    • /
    • 제26권2호
    • /
    • pp.25-32
    • /
    • 2017
  • 돈분 자체의 저위 발열량은 859~1,075 kcal/kg로 낮게 나타나 열처리 중 한 공정인 탄화공정에 의한 연료의 개질이 필요하다. 돈분의 탄화 공정에서 가장 중요한 인자는 탄화 온도이며 본 연구에서는 탄화온도에 대한 적정 범위의 평가가 돈분의 열적 특성과 돈분의 탄화 반응속도를 통하여 이루어졌다. 열적 특성 분석 결과, 적정 탄화 온도는 높은 수율과 흡열 반응이 일어나는 $240{\sim}320^{\circ}C$로 평가되었다. 돈분 탄화공정에서의 반응속도는 1차 반응식과 Arrhenius 식을 통하여 나타내었으며, 빈도인자(lnA)는 3.05~13.08, 활성화 에너지는 6.94~18.05 kcal/mol로 평가되었다. 돈분 탄화 공정의 높은 효율과 돈분 내부로의 충분한 열전달을 위하여 최적 탄화 시간을 5~20 min로 설정하였을 때, 적정 탄화 온도의 범위는 $260{\sim}300^{\circ}C$로 나타났다.

바이오가스 이용 500 kg-H2/d급 그린수소충전소의 수소추출시스템 공정모델링 및 경제성 분석 (Process Modeling and Economic Analysis of Hydrogen Production System on 500 kg-H2/d-class Green Hydrogen Station using Biogas)

  • 홍기훈;송형운
    • 한국가스학회지
    • /
    • 제25권4호
    • /
    • pp.19-26
    • /
    • 2021
  • 본 연구에서는 충주시의 음식물바이오에너지센터로부터 음식물류페기물의 혐기발효 처리 후 발생되는 바이오 가스를 전처리 및 고질화공정을 통해 이산화탄소 및 불순물을 제거한 바이오메탄을 원료로 그린수소를 생산하는 수소추출시스템 공정을 모델링하고 경제성 분석을 수행하였다. 고질화된 바이오메탄은 개질 및 정제공정을 통해 하루 약 500 kg의 고순도 수소가 생산되며, 공정모델의 수소생산량 결과를 토대로 현재 실증을 위해 구축하고 있는 그린수소충전소 수소추출시스템의 경제성 분석을 수행하였다. 경제성 분석 결과, 수소추출시스템의 구축년도를 제외한 15년의 사업운영 후 순현재가치는 38억3천1백만 원, 수익성지수법 1.42 및 내부수익률 20.25%로 사회적 할인율 4.5%를 상회하므로 타당성 확보가 가능하다 판단된다.

가정용 연료전지 시스템 내부 수소 누출의 비정상 및 정상 상태에 관한 전산 해석 (A CFD Study on Unsteady and Steady State of the Hydrogen Leakage for Residential Fuel Cell System)

  • 정태용;안재욱;남진현;신동훈;김영규
    • 한국가스학회지
    • /
    • 제11권4호
    • /
    • pp.41-46
    • /
    • 2007
  • 본 연구는 국내 F사의 가정용 연료전지 시스템의 실제 크기를 모델로 하여, 시스템 내부에 4가지 구성품(개질기, 연료전지 스택, 가습기, 탈황기)이 시스템 체적 중 약 30%를 차지하고 있을 때, 환기 면적과 수소 누출량을 변화시키면서 전산 해석을 수행하였다. 환기 면적 1%, 수소 누출량 1%인 경우, 비정상 상태 전산 해석 결과, 수소는 약 50초 후 누출 지점 근처에서 농도 변화를 확연히 감지할 수 있었으며, 200초 후, 시스템 하부에 비해 상부에서 농도 증가를 뚜렷하게 알 수 있었다. 환기 면적 1%, 수소 누출량 1%, 3%, 5%의 대한 정상 상태 해석 결과, 수소 누출량이 5%가 되면 시스템 전 영역에서 수소의 인화 하한(4%, 체적기준)에 도달하는 것을 확인하였다. 환기 면적 2%, 수소 누출량 1%인 경우, 비정상 상태 전산해석 결과, 수소는 약 60초 동안은 누출 지점에서 하부측으로 농도 증가를 보이다가, 점차 상부측 환기구를 통해 배출되어 약 250초가 지난 후 정상 상태에 도달하였다. 환기 면적 2%, 수소 누출량 1%, 3%, 5%의 정상 상태 해석 결과, 수소 누출량이 5%가 되더라도 대부분의 영역에서 경보 농도 수준(1%, 체적기준) 이하임을 확인할 수 있었으나, 누출 지점으로부터 상부쪽으로 위험 영역이 존재함을 알 수 있었다.

  • PDF

메탄연료사용을 위한 고체산화물 연료전지용 Reduced Graphene Oxide/Sr0.98Y0.08TiO3-δ 연료극 개발 (Development of Reduced Graphene Oxide/Sr0.98Y0.08TiO3-δ Anode for Methane Fuels in Solid Oxide Fuel Cells)

  • 김형순;김준호;모수인;박광선;윤정우
    • Korean Chemical Engineering Research
    • /
    • 제61권2호
    • /
    • pp.296-301
    • /
    • 2023
  • 고온 운전이 가능한 고체산화물 연료전지의 최대의 장점은 내부개질을 통한 연료의 다양성에 있다. 하지만 기존의 Ni/SYZ전극은 탄소침적에 대한 단점을 가지고 있고, 이를 해결하기 위해 페로브스카이트 구조의 연료극 개발이 진행되었다. 본 연구에서는 페로브스카이트 대체 연료극의 낮은 전기전도도 및 촉매활성을 향상시키기 위해 rGO(reduced graphene oxide)를 Sr0.92Y0.08TiO3(SYT)와 혼합하여 연료극에 대한 성능 평가를 진행하였다. Ni/YSZ(yttria stabilized zirconia)와 SYT에 1wt%rGO를 첨가하여 연료극을 합성하였다. 고온 산화조건에서 전극 제조 후 rGO의 유무 확인은 XPS 및 라만 분석을 통해 확인하였다. rGO/SYT 연료극은 rGO 대비 H2에서 3배, CH4에서 6배의 매우 큰 성능 향상을 보여주었다.

골판지 고지의 물리화학적 처리에 의한 강도향상 (Strength Property Improvement of OCC-based Paper by Various Mechanical and Chemical Treatments of its Fiber)

  • 서영범;이종훈
    • 농업과학연구
    • /
    • 제26권1호
    • /
    • pp.21-30
    • /
    • 1999
  • 본 연구는 골판지고지의 가장 중요한 물성인 강도적 성질을 증대시키기 위하여 섬유의 전처리 방법으로서 Hobart mixer를 사용하여 섬유 내부의 결합제거 및 섬유표면에 Microcompression을 형성하여 개질처리 하였으며, 4가지 방법의 고해방법(Valley beater, Kady mill, Impact refining)을 채택하여 골판지고지의 최적고해 방법을 찾는데 그 목적을 두고 이 연구를 수행하였다. 그 결과는 다음과 같다. 1. 섬유장감소를 적게 유발하는 고해방법으로는 Kady mill과 PFI mill의 고해방법 이었으며 고해시 Curl을 펴주는 고해방법을 Kady mell과 Valley beater의 고해방법이 적절하였다. 2. 열단장은 Valley beating의 고해방법에 의하여 강도가 가장 많이 증가되었으며 인열강도는 가장 많이 감소하였다. 섬유전처리를 한 Comp-1과 Comp-2는 고해방식과 상관없이 열단장을 전체적으로 약 10% 증대시켰다. 3. 인열강도는 Comp-1, Comp-2의 전처리방법과 PFI mill 고해로 증대할수 있었다. 4. 파열강도는 Comp-1, Comp-2의 전처리방법과 Valley beater 고해로 증대할수 있었다. 5. 인열강도를 우지한채로 열단장을 가장 높이는 방법은 섬유전처리 방식인 Comp-1이나 Comp-2를 사용하여 Valley beating을 이용하는 방법으로 판단되었다.

  • PDF

생체 모방 폴리아민 복합체 기반의 크기 조절이 가능한 아민 기능화 실리카 나노입자의 합성 (Synthesis of Size Controllable Amine-Functionalized Silica Nanoparticles Based on Biomimetic Polyamine Complex)

  • 김동영;김재성;이창수
    • Korean Chemical Engineering Research
    • /
    • 제60권3호
    • /
    • pp.407-413
    • /
    • 2022
  • 본 연구는 생체 모방 폴리아민 복합체를 통해 아민 그룹(amine group)이 기능화 되고 크기 조절이 간편한 실리카 나노입자의 합성 방법에 관한 것이다. 먼저, 실리카 나노입자를 합성하기 위한 촉매로써 polyallylamine hydrochloride(PAH)와 인산 이온(phosphate ion)으로 구성된 폴리아민 나노 복합체를 형성하였다. 복합체의 크기는 pH 조건에 따라 가역적인 조절이 가능하다. 나노 복합체에 존재하는 PAH 주쇄의 다량의 아민 그룹들은 silicic acid의 축합(condensation) 반응을 촉매 하며, 결과적으로 실리카 나노입자를 매우 빠른 시간 내에 합성할 수 있다. 최종적으로 pH 조건에 따라 다양한 크기를 갖는 실리카 나노 입자를 합성하였다. 실리카 나노입자의 합성 과정에서 촉매 역할을 하는 PAH는 나노입자의 내부 및 표면에 함입되고 합성된 실리카 나노입자의 표면에 아민 그룹이 노출된다. 본 방법은 실리카 나노입자의 합성과 표면개질이 동시에 이루어지며, 아민 그룹이 도입된 실리카 나노입자를 다양한 크기로 조절하여 손쉽게 합성할 수 있다. 최종적으로, 본 연구에서 제시한 방법은 기존의 합성법 보다 온화한 조건 하에서 단시간 내에 실리카 나노입자를 합성할 수 있으며, 생체 공학 및 재료 분야에서 적용되어 넓게 활용될 수 있다.

캐나다 아사바스카 오일샌드 지질특성 (Geology of Athabasca Oil Sands in Canada)

  • 권이균
    • 한국석유지질학회지
    • /
    • 제14권1호
    • /
    • pp.1-11
    • /
    • 2008
  • 오일샌드는 비재래형(unconventional) 석유자원의 하나로서 비투멘(bitumen), 물, 점토, 모래의 혼합물이다. 오일샌드 비투멘은 API 비중이 $8-14^{\circ}$이고 점도가 10,000 cP 이상인, 매우 무겁고 점성이 큰 탄화수소 자원으로서 일반적으로 지표나 천부퇴적층에서 유동성을 갖지 않는다. 오일샌드 비투멘은 주로 캐나다 앨버타주와 사스캐추완주에 분포하고 있으며, 캐나다에만 원시부존량이 1조 7천억 배럴, 확인매장량이 1천 7백억 배럴에 달한다. 대부분은 앨버타주 포트 멕머레이(Fort McMurray) 인근의 아사바스카(Athabasca), 콜드레이크(Cold Lake), 피스리버(Peace River) 지역에 매장되어 있다. 캐나다 오일샌드 저류지층은 아사바스카 지역의 멕머레이층(McMurray Fm)과 클리어워터층(Clearwater Fm), 콜드레이크 지역의 멕머레이층(McMurray Fm), 클리어워터층(Clearwater Fm), 그랜드래피드층(Grand Rapid Fm), 피스리버 지역의 블루스카이층(Bluesky Fm)과 게팅층(Gething Fm)이다. 이들 지층은 하부 백악기 지층으로서 중생대 초-중기에 발생한 북미판과 태평양판의 충돌과 그로 인한 대륙전면분지(foreland basin)의 형성과정에서 퇴적되었다. 분지의 기반암은 복잡한 지형을 갖는 고생대 탄산염암이며, 그 위에 북미대륙 북쪽의 보레알해(Boreal Sea)로부터 현재의 북미대륙 서부를 남북으로 관통하는 전기백악기내해로(Early Cretaceous Interior Seaway)를 따라 해침이 발생하면서 오일샌드 저류지층이 형성되었다. 세 개의 주요 오일샌드 분포지역 가운데 80% 이상의 오일샌드를 매장하고 있는 아사바스카 지역의 저류지층인 멕머레이층과 크리어워터층의 최하부층원인 와비스코 층원(Wabiskaw Mbr)은 전기 백악기 시기의 해침층서를 잘 반영하고 있다. 멕머레이층 하부에는 하성기원의 퇴적층이 발달하고, 상부로 가면서 점차로 조석기원의 천해 퇴적층이 우세해지며, 와비스코 층원에 와서는 의해 세립질 퇴적층이 광역적으로 분포한다. 이러한 해침기원의 상향 세립화 경향은 아사바스카 오일샌드 부존지역에서 일반적으로 관찰된다. 오일샌드 부존지층은 일반적으로 불균질 저류층이며, 주요 저류층은 하성퇴적층이나 에스츄어리(estuary) 기원의 퇴적층에 발달한 하도-포인트 바 복합체(channel-pont bar complex)이다. 이러한 하도-포인트바 복합체는 범람원 및 조수평원 세립질 퇴적층이나 만-충진(bay-fill) 퇴적층과 함께 멕머레이층을 형성한다. 멕머레이층 상부에 오는 와비스코 층원은 주로 외해 세립질 퇴적층으로 이루어져 있으나, 멕머레이층을 대규모로 침식하는 하도사암층이 지역적으로 발달하기도 한다. 캐나다에서 오일샌드는 주로 노천채굴(surface mining)과 심부열회수(in-situ thermal recovery) 방식으로 생산한다. 50 m 미만의 심도에 묻혀있는 오일샌드는 노천채굴 방식으로 회수하여 비투멘 추출(extraction)과 개질(upgrading)과정을 거쳐 합성원유(synthetic crude oil)로 생산된다. 반면에 150-450 m 심도에 묻혀있는 오일샌드는 주로 심부열회수 방식으로 비투멘을 회수하여 비교적 간단한 비투멘 블렌딩(blending)과정을 통해 유동성을 증가시켜 정유시설로 운반한다. 심부열회수 방식으로 오일샌드를 개발할 경우 주로 스팀주입중력법(SAGD: Steam Assisted Gravity Drainage)이나 주기적스팀강화법(CSS: Cyclic Steam Stimulation)이 사용된다. 이러한 방법들은 저류층에 스팀을 주입하여 저류층 내의 온도를 상승시킴으로써 비투멘의 유동성을 증가시켜 회수하는 기술을 사용한다. 따라서 오일샌드 저류층 내부의 스팀전파효율을 결정하는 저류지층의 주요 지질특성에 대한 이해가 선행되어야 효과적인 생산설계와 효율적인 생산을 수행할 수 있다. 오일샌드 생산에 영향을 미치는 저류층의 주요 지질특성에는 (1)비투멘 샌드층의 두께(pay) 및 연결성(connectivity), (2) 비투멘 함량, (3) 저류지역 지질구조, (4) 이질배플(mud baffle)이나 이질프러그(mud plug)의 분포, (5) 비투멘 샌드층에 협재하는 이질퇴적층의 두께 및 수평연장성(lateral continuity), (6) 수포화층(water-saturated sand)의 분포, (7) 가스포화층(gas-saturated sand)의 분포, (8) 포인트바의 성장방향성, (9) 속성층(diagenetic layer)의 분포, (10) 비투멘 샌드층의 조직특성 변화 등이 있다. 이러한 지질특성에 대한 고해상의 분석을 통해 보다 효과적인 오일샌드 개발이 달성될 수 있을 것이다.

  • PDF