• Title/Summary/Keyword: 내박테리아성

Search Result 118, Processing Time 0.03 seconds

The Grazing Rates and Community Dynamics of Zooplankton in the Continuous River Stretch Ecosystem Include with Brackish Zone (기수 지역을 포함한 연속적인 강 구획 생태계 내에서의 동물플랑크톤의 군집 동태와 섭식율)

  • Kim, Hyun-Woo
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.4 s.118
    • /
    • pp.462-470
    • /
    • 2006
  • The zooplankton community dynamics and grazing experiments was evaluated along a 40 km section of the lower Seomjin river system. Zooplankton was sampled twice a month from January 2005 to June 2006 at three sites (River mouth; RKO, Seomjin bridge: RK12 and Gurae bridge: RK36) in the main river channel. During the study period, the values of most limnological parameters in the three sites were fairly similar, except for conductivity. Annual variation of conductivity in River mouth and Seomjin bridge was more dramatic than which of the other site. There were statistically significant spatial and seasonal differences in zooplankton abundance (ANOVA, P<0.01). Total abundance of major zooplankton groups at both stations was much higher than in Gurae bridge. Among the macrozooplankton, cladocerans abundance was negligible in study sites during study periods. Community filtering rates (CFRs) for phytoplankton and bacteria varied from 0 to 50 mL $L^{-1}\;D^{-1}$ and from 0 to 45 mL $L^{-1}\;D^{-1}$, respectively. The spatial variation of CFRs for phytoplankton was significant (ANOVA, P<0.05). The CFRs of copepods for phytoplankton and bacteria was much higher than that of cladocerans at study sites. Total zooplankton filtering rates on bacteria were slightly lower than filtering rates on phytoplankton. The CFRs of microzooplankton (MICZ) for bacteria were much higher than for macrozooplankton (MACZ) at all sites. Considering the total zooplankton community, MICZ generally were more important than MACZ as grazers of bacteria and phytoplankton in freshwater zone, while MACZ were more important than MICZ as grazers of phytoplankton in brackish zone.

Correlations and Seasonal Variations of Marine Viral Abundances, Bacterial Abundances and Concentration of Chlorophyll-$\alpha$ in Gwangyang Bay (광양만내 해양 바이러스에 대한 엽록소$\alpha$와 박테리아 개체량의 계절적 변이와 상관관계)

  • Choi, Eun-Seok;Kim, So-Jung;Oh, Ro-Ra;Yun, Hee-Young;Shin, Kyung-Soon;Chang, Man;Lee, Sukchan;Lee, Sang-Seob;Lee. Taek-Kyun
    • Korean Journal of Environmental Biology
    • /
    • v.22
    • /
    • pp.86-92
    • /
    • 2004
  • The marine viral density in the Gwangyang Bay was abundant about 2.0${\times}$10$^{8}$ particles ml$^{-1}$ . For each season, viral abundances were recorded from 9.0${\times}$10$^{8}$ particles ml$^{-1}$ in summer to 0.7${\times}$10$^{6}$ particles ml$^{-1}$ in winter. The spatial distributions of the viral, bacterial and phytoplankton biomass in the Gwangyang Bay were mostly highey in closed estuarine system (Station 2, 5, 10, 12, 16, 20) than open ocean system (Station 28, 38, 42, 46, 51), And the othey closed estuarine system (Station 22, 26, 32, 34) indicated higher viral abundances, lower bacterial and plankton biomass than open oceanic system. In depths of some stations, the bacterial abundances exceeded a hundred fold than viral abundances. Seasonal abundances of marine viruses and their host systems were dynamically changed, and their seasonal variations were closely correlated. In summer, viral and bacterial abundances were increased, and phytoplankton chlorophyll $\alpha$ concentrations were maintained in average values. In winter, viral and bacterial abundances were dramatically decreased, and chlorophyll a concentrations were decreased, but, immediately increased. The viral abundances were peaked in August 2001, and bacteyial abundance, in August 2001 and June 2002, while chlorophyll a concentrations were peaked in April. 2002. In total host and viral abundances, it was seemed that their pools were maintained to steady-states by viral mortality, and viral abundance maintained steady-states. In our assessments, this report is a unique research about marine viral ecology of the Gwangyang Bay in Korea.

A Study on the Eco-Toxicity of Silicone-Based Antifoaming Agents Discharging into Marine Environments (해양으로 배출되는 실리콘계 소포제의 생태독성 연구)

  • Kim, Tae Won;Kim, Young Ryun;Park, MiOk;Jeon, MiHae;Son, Min Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.1
    • /
    • pp.81-88
    • /
    • 2019
  • In order to understand the effects of the main components of antifoaming agents on the marine benthic ecosystem when silicone-based antifoaming agents are discharged into marine environments, eco-toxicity testing was performed on silicone and alcohol-based antifoaming agent by using benthic amphipod (Monocorophium acherusicum) and luminescent bacteria (Vibrio fischeri). The toxic effects of Polydimethylsiloxane (PDMS) as a main component of silicone-based antifoaming agents on aquatic organisms were also researched. In the results of the eco-toxicity test, luminescent bacteria showed a maximum of 9 times more toxic effects than benthic amphipod for alcohol-based antifoaming agents, and silicone-based antifoaming agents showed a maximum of 400 times more toxic effects than alcohol-based. The $LC_{50}$ and $EC_{50}$ values of PDMS ranged from 10 to $44,500{\mu}g/L$ in phytoplankton, invertebrate, and fish. In the results of applying PBT (P: persistency, B: bioaccumulation, T: toxicity) characteristics as an index showing the qualitative characteristics of PDMS, persistency (P) and bioaccumulation (B) were confirmed. Thus, when PDMS is discharged to marine environments, it could accumulate in the upper trophic level through bioaccumulation and the food chain, which could have negative effects on benthic organisms. The results of this study may be used for objective and scientific risk assessment, considering the major components of antifoaming agents when investigating the effects of various discharged antifoaming agents in marine ecosystem.

Comparison of the Bacterial and Fungal Colonies from Rana dybowskii which Collected from Inside and Outside Frog Farms and Identification of the Bacteria from the Tadpoles (개구리 증양식장 내·외부에서 채집된 북방산개구리(Rana dybowskii)로부터 검출된 세균과 곰팡이 콜로니 수의 비교 및 유생으로부터 확인된 세균 규명)

  • Kwon, Sera;Park, Daesik;Choi, Woo-Jin;Park, Jae-Jin;Cho, Han-Na;Han, Ji-Ho;Lee, Jin-Gu;Koo, Kyo-Soung
    • Korean Journal of Environment and Ecology
    • /
    • v.31 no.5
    • /
    • pp.444-454
    • /
    • 2017
  • There are many ongoing studies of infectious diseases as the major factor responsible for global declining of the amphibian population. Although some point out the amphibian rearing facilities like frog farms as one of the important sources of harboring and spreading amphibian infectious pathogens in the wild, there have been few related studies in South Korea. In this study, we investigated the bacterial and fungal colonies on the skin and in the internal organs of frogs and tadpoles collected inside and outside of Dybowski's brown frog farms in Inje, Goesan, and Gongju to compare the difference according to the region and between inside and outside the farm. We also intended to classify the bacteria collected from the tadpoles into species by analyzing 16s rDNA gene sequences. The result showed that the number of bacterial colonies found in the skin and gut of frogs and the number of fungal colonies found in the skin and liver of frogs collected in Goesan was significantly greater than those in the frogs in Inje. However, there was no difference between the frogs collected inside and outside of farms in both regions. In the case of tadpoles, the number of fungal colonies in the tadpoles collected from Gongju was greater than that in the tadpoles collected from Inje. The comparison of inside and outside frog farms showed that there were more bacterial colonies on the skin of the tadpoles collected from inside than outside the frog farm in Inje and more bacterial colonies in the organs of the tadpoles collected from outside than inside the farm in Gongju. The frogs with higher condition factor (body weight/snout-vent length*100) showed fewer bacterial colonies on the skin and fewer fungal colonies in the heart, but there were no significant relationships in tadpoles. We identified the total of 15 genera and four phyla of bacteria, but the difference according to regions and between inside and outside farm was not evident. The result of this study indicates that the different conditions according to the locality of farm and between inside and outside farm cause the difference in the population sizes of bacterial and fungal colonies and that it can affect the overall health condition of Dybowski's brown frogs in the farm. Moreover, the result suggests that effective disease control in the facility is greatly necessary to ensure successful operation of amphibian rearing facility and to prevent the possible spread of diseases from the facility to the wild.

Microbial Leaching of Iron from Magnetite (미생물을 이용한 자철석으로부터 철 침출에 관한 연구)

  • Roh, Yul;Oh, Jong-Min;Seo, Yong-Jae;Jang, Hee-Dong
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.4 s.50
    • /
    • pp.265-275
    • /
    • 2006
  • It is in its infancy to use bacteria as a novel biotechnology for leaching precious and heavy metals from raw materials. The objective of this study was to investigate biogeochemical processes of iron leaching from magnetite reduction by iron-reducing bacteria isolated from intertidal flat sediments, southwestern part of Korea. Microbial leaching experiments were performed using commercial magnetite, Aldrich magnetite, in well-defined mediums with and without bacteria. Water soluble Fe production was determined by ICP analysis of bioleached samples in comparison to uninoculated controls, and the resulting precipitated solids were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The extent of iron leaching from magnetite in the aerobic conditions (Fe = 107 ppm) was higher than that in the anaerobic environments (Fe = 94 ppm). In the anaerobic conditions, Fe(III) in commercial magnetite was also reduced to Fe(II), but no secondary mineral phases were observed. Amorphous iron oxides formed in the medium under aerobic conditions where there was sufficient supply of oxygen from the atmosphere. SEM observation suggests that the reduction process involves dissolution-precipitation mechanisms as opposed to solid state conversion of magnetite to amorphous iron oxides. The ability of bacteria to leach soluble iron and precipitate amorphous iron oxides from crystalline magnetite could have significant implications for biogeochemical processes in sediments where Fe(III) in magnetite plays an important role in the largest pool of electron acceptor as well as the tool as a novel biotechnology for leaching precious and heavy metals from raw materials.

Impact of Microbiota on Gastrointestinal Cancer and Anticancer Therapy (미생물 균총이 위장관암과 항암제에 미치는 영향)

  • Kim, Sa-Rang;Lee, Jung Min
    • Journal of Life Science
    • /
    • v.32 no.5
    • /
    • pp.391-410
    • /
    • 2022
  • Human microbiota is a community of microorganisms, including bacteria, fungi, and viruses, that inhabit various locations of the body, such as the gut, oral, and skin. Along with the development of metabolomic analysis and next-generation sequencing techniques for 16S ribosomal RNA, it has become possible to analyze the population for subtypes of microbiota, and with these techniques, it has been demonstrated that bacterial microbiota are involved in the metabolic and immunological processes of the hosts. While specific bacteria of microbiota, called commensal bacteria, positively affect hosts by producing essential nutrients and protecting hosts against other pathogenic microorganisms, dysbiosis, an abnormal microbiota composition, disrupts homeostasis and thereby has a detrimental effect on the development and progression of various types of diseases. Recently, several studies have reported that oral and gut bacteria of microbiota are involved in the carcinogenesis of gastrointestinal tumors and the therapeutic effects of anticancer therapy, such as radiation, chemotherapy, targeted therapy, and immunotherapy. Studying the complex relationships (bacterial microbiota-cancer-immunity) and microbiota-related carcinogenic mechanisms can provide important clues for understanding cancer and developing new cancer treatments. This review provides a summary of current studies focused on how bacterial microbiota affect gastrointestinal cancer and anticancer therapy and discusses compelling possibilities for using microbiota as a combinatorial therapy to improve the therapeutic effects of existing anticancer treatments.

Removal Characteristics of COD and Nitrogen by Aerated Submerged Bio-film(ASBF) Reactor (ASBF 생물반응기를 이용한 COD 및 질소 제거특성)

  • Choi, Young-Ik;Jung, Byung-Gil;Son, Hee-Jong;Sung, Nak-Chang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.9
    • /
    • pp.997-1002
    • /
    • 2007
  • The objectives of this research are to remove dissolved organic matter and nitrogen compounds by using aerated submerged bio-film(ASBF) reactors in batch systems and improve understanding of dissolved organic matter and nitrogen compounds removal rates with dynamic relationships between heterotrophic and autotrophic bacteria in the fixed-film reactor. This research explores the possibility of enhancing the performance of shallow wastewater treatment lagoons through the addition of specially designed structures. These structures are designed to encourage the growth of a nitrifying bacterial bio-film on a submerged surface. Specially, the effects of cold temperatures on the dissolved organic matter and ammonia nitrogen performance of the ASBF pilot plant was investigated for the batch system. It is anticipated thai the ASBF would be used for a design of biological treatment for removing of dissolved organic matter and nitrogen compounds in new wastewater treatment plants as well as existing wastewater treatment plants.

Compound waterproofing method of green roof using copper barrier sheet and recycled tire melting liquid waterproofing material that reinforced treatments are valve and glass fiber mesh. (알루미늄 판막과 유리섬유를 합지한 구리방근시트와 폐타이어 용융액상 도막방수재를 이용한 옥상녹화 복합방수공법)

  • Kim, Young chan;Cho, Il Kyu;choi, sung min;Oh, Sang Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.173-178
    • /
    • 2008
  • This is green roof bottom system which composed by aluminum valve and glass fiber together as major reinforcement, so the cooper sheet can have root proof, and using recycled tire gel-type membrane waterproofing system which dost not contains VOCs. The copper sheet reduce the plants' root growing, so it helpes to maintain the waterproofing layer and stability of root proofing. Gel type membrane waterproofing system can do waterproofing, stress dispersion, and reducing leakage expansion. So those two materials can help each other to make green roof bottom layer would have the stability and durability.

  • PDF

Global Search Strategy using Enhanced Bacteria Chemotaxis algorithm (개선된 Bacteria Chemotaxis 알고리즘을 이용한 전역적 탐색 기법)

  • Park Jong Won;Park J.E.;Oh K.W.
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.790-792
    • /
    • 2005
  • 함수 최적화는 주어진 자원의 한도 내에서 최대의 이익 흑은 최소의 손실을 내는 최선의 결정을 내리는 것을목표로 한다. 본 논문은 $M{\ddot{u}}ller$의 연구를 바탕으로 박테리아의 주화성을 형상화한 'Chemical Sensing Bacteria Chemotaxis'라는 알고리즘을 제안한다. 이 알고리즘은 multimodal 환경에서의 전역 탐색을 목표로 한다. 또한 실험을 통해, 제안 알고리즘의 타당성을 분석하고, 결과적으로 제안 알고리즘이 기존의 자연계 기반의 알고리즘에 비해 경쟁력이 있음을 입증하였다.

  • PDF

Mineralogy and Biogeochemistry of Intertidal Flat Sediment, Muan, Chonnam, Korea (전남 무안 갯벌 퇴적물에 관한 광물학적 및 생지화학적 연구)

  • Park, Byung-No;Lee, Je-Hyun;Oh, Jong-Min;Lee, Seuug-Hee;Han, Ji-Hee;Kim, Yu-Mi;Seo, Hyun-Hee;Roh, Yul
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.1 s.51
    • /
    • pp.47-60
    • /
    • 2007
  • While sedimentological researches on Western coastal tidal flats of Korea have been much pelformed previously, mineralogical and biogeochemical studies are beginning to be studied. The objectives of this study were to investigate mineralogical characteritics of the inter-tidal flat sediments and to explore phase transformation of iron(oxyhydr)oxides and biomineralization by metal-reducing bacteria enriched from the inter-tidal flat sediments from Muan, Jeollanam-do, Korea. Inter-tidal flat sediment samples were collected in Chungkye-myun and Haeje-myun, Muan-gun, Jeollanam-do. Particle size analyses were performed using the pipette method and sedimentation method. The separates including sand, silt and clay fractions were examined by scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis, transmission electron microscopy (TEM), and X-ray diffiaction (XRD). After enriching the metal-.educing bacteria from the into,-tidal flat sediments, the bacteria were used to study phase transformation of the synthesized iron (oxyhydr)oxides and iron biomineralization using lactate or glucose as the electron donors and Fe(III)-containing iron oxides as the electron accepters. Mineralogical studies showed that the sediments of tidal flats in Chung]rye-myun and Haeje-myun consist of quartz, plagioclase, microcline, biotite, kaolinite and illite. Biogeochemical researches showed that the metal-reducing bacteria enriched from the inter-tidal flat sediments reduced reddish brown akaganeite and mineralized nanometer-sized black magnetite. The bacteria also reduced the reddish brown ferrihydrite into black amorphous phases and reduced the yellowish goethite into greenish with formation of nm-sized phases. These results indicate that microbial Fe(III) reduction may play one of important roles in iron and carbon biogeochemistry as well as iron biomineralization in subsurface environments.