• Title/Summary/Keyword: 내리막경사

Search Result 25, Processing Time 0.023 seconds

Intelligent Walking of Humanoid Robot for Stable Walking on a Decent (휴머노이드 로봇의 경사면 내리막 보행을 위한 지능보행 연구)

  • Kim, Dong-Won;Park, Gwi-Tae
    • The Journal of Korea Robotics Society
    • /
    • v.1 no.2
    • /
    • pp.197-202
    • /
    • 2006
  • We present the synergy effect of humanoid robot walking down on a slope and support vector machines in this paper. The biped robot architecture is highly suitable for the working in the human environment due to its advantages in obstacle avoidance and ability to be employed as human substitutes. But the complex dynamics in the robot and ground makes robot control difficult. The trajectory of the zero moment point (ZMP) in a biped walking robot is an important criterion used for the balance of the walking robots. The ZMP trajectory as dynamic stability of motion will be handled by support vector machines (SVM). Three kinds of kernels are also employed, and each result from these kernels is compared to one another.

  • PDF

A Controller Design and Performance Evaluation for 6 DOF Mobile Robot using IMU (IMU를 이용한 6자유도 모바일 로봇의 구동을 위한 제어기 설계 및 성능평가)

  • Kang, Jin-gu;hwang, zai-moon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2014.07a
    • /
    • pp.249-252
    • /
    • 2014
  • 본 논문에서는 IMU를 이용한 6자유도 모바일 로봇을 설계하고 성능을 평가해 보았다. IMU를 이용하여 로봇의 Roll과 Pitch 각을 측정하여 모바일 로봇의 이동경로 경사각을 측정하여 지면이 수평 일 때 모바일 로봇의 6바퀴 모두 항상 지면과 닿아 있는 상태를 유지한다. 또한 오르막과 내리막일 경우 로봇의 동역학에 의한 최소한의 에너지를 유지하여 이동이 가능하도록 하기위한 로봇의 제어기를 설계하고 그 성능을 평가해 보았다.

  • PDF

The Comparison of Lower Extremity Muscle Activities according to Different Longitudinal arch and Treadmill Inclination (세로발활 높이와 트레드밀 경사도 차이에 따른 하지의 근활성도 비교)

  • Kim, Eun-Young;Kim, Yeon-Ju;Kim, Keun-Jo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.10
    • /
    • pp.4459-4466
    • /
    • 2011
  • The purpose of this study was to compare the lower extremity muscle activities according to the different longitudinal arch and treadmill inclination and to provide basic data on treadmill walking exercise. The selected 17 subjects who had not lower extremity injury and ROM limitation were recruited in this study. The longitudinal arch was divided into normal foot and flat foot. The inclinations of the treadmill were $0^{\circ}$, up hill $5^{\circ}$, $10^{\circ}$, $15^{\circ}$, down hill $5^{\circ}$, $10^{\circ}$ and $15^{\circ}$. The electromyography was used to analyze the muscle activity of rectus femoris, biceps femoris, tibialis anterior, gastrocnemius lateralis and medialis. There were significant differences between the inclination $0^{\circ}$ and down hill $15^{\circ}$. There was no interactive effect of treadmill inclination on the longitudinal arch. The activity difference of lower extremity muscle was not conspicious. There existed the interactive effect between the longitudinal arch and muscle activity. The contrast test within subjects showed positively in the rectus femoris and gastrocnemius medialis, biceps femoris and gastrocnemius medialis. The different longitudinal arch did not influence on the effect(p>.05). There was significant difference between the normal foot and the flat foot. So it is necessary to carry out the long term study.

The Protocol of Basic Body Ability for 4D Cycling System (4D 사이클링에 대한 기초 신체능력 프로토콜)

  • Kim, Ki-Bong;Lee, Sung-Han
    • Journal of Digital Convergence
    • /
    • v.11 no.11
    • /
    • pp.313-320
    • /
    • 2013
  • The four-dimensional cycle simulator, which can recognize whether the road is ascent or descent, its gradient, and status of its surface on Virtual Reality, is introduced in this paper. On the base of these recognitions, various virtual motion path situations are displayed on LCD monitor attached ahead. These various situations may support not only the sense of realty but also an interest in a game in opposition to previous exercise cycles that might be monotonous. In this paper both analysis and estimation of basic bodily abilities for the four-dimensional cycling are addressed.

A Study on the Thermal Behavior Characteristic of Drum Brake considering Braking Patterns (제동 패턴을 고려한 드럼 브레이크의 열적 거동 특성에 대한 연구)

  • Lee, Kye-Sub;Son, Sung-Soo;Yang, Ki-Hyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.145-154
    • /
    • 2006
  • Each part of drum brake system is loaded by continual mechanical force and thermal force every time of braking, so enough strength and stability are required. Thermal characteristic is one of the important factors in drum brake systems design. This paper presents the thermal performance such as temperature distribution and thermal contact stress of drum brake system considering several braking patterns; 80th heat braking test mode, heat fade braking test mode, general road mode, steep slope road mode and off road mode. Transient heat transfer analysis and Thermo elastic contact analysis is executed to obtain the temperature distribution, and to evaluate thermal stress of drum brake by using ABAQUS/Standard code. This procedure of analysis can effectively be used to improve the quality problem of brake system and to get design guideline of the new product.

Automotive Headlight Control System Using Tilt and Photo Sensors (기울기 및 광센서를 이용한 자동차 헤드라이트 자동조절시스템)

  • Kim, Tae-Woong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.6
    • /
    • pp.14-21
    • /
    • 2004
  • This automotive headlight control system is newly proposed that, under my slope degree of the driving mad(flat up-hill, and down-hill) at night driving, the reflecting mirror of the headlight can be automatically controlled for safe driving. At first whether or not any vehicle is driven near is checked by photo sensor. Secondly, using the slope degree of the automotive feedbacked from the tilt sensor, the servo motor with the headlight is controlled to be turned right or down to the suitable angle. The servo motor is appropriately controlled according to road conditions. The proposed headlight control system is designed on the basis of the tested illumination intensity obtained according to any slope degree of roads. Finally, it is confirmed that the test model works very well in the given road conditions and environments.

Design of Lateral Controller for Autonomous Guidance of a Farm Tractor in Field Operations (농업용 트랙터의 작업 시 자동 운전 유도를 위한 횡방향 제어기 설계)

  • Han, Kun Hee;Lee, Ji Min;Song, Bongsob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.5
    • /
    • pp.551-557
    • /
    • 2014
  • This paper presents a robust lateral controller for autonomous guidance of a farm tractor in field operations. Although mechanical steering actuators have recently been used for passenger vehicles, the steering actuator of the farm tractor is based on a hydraulic system, resulting in limited bandwidth and a larger time delay. Based on a kinematic tractor model with steering actuator dynamics, a nonlinear control technique called dynamic surface control is applied to design a robust lateral controller that compensates for uncertainty owing to steering actuator and road geometry. Finally, tracking performance and robustness of the proposed controller are validated via commercial tractor simulations, with respect to the time delay of the steering actuator and road geometry (e.g., up and down hills), on a given field with a constant friction coefficient.

A Study on the Improvement of Driving Stability for the Motorized Manual Wheelchair INMEL-VII (전동화 수동 휠체어 INMEL-VII의 주행 안정성 개선에 관한 연구)

  • Jeong, Dong-Myeong;Go, Su-Bok;Kim, Ju-Myeong
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.4
    • /
    • pp.543-554
    • /
    • 1995
  • This paper describes the improvement of driving stability and the control system for INMEL-VII which is motorized manual wheelchair to satisfy requirements of the disabled The INMEL-VI was based on high maneuverability of the omnidirection drive and safety But the results of field tests about two years showed some problems to the disabled in daily life such as driving stability, Pm switching noise, and rotation of motor without driving command on negative slope. To solve the problems due to an increased DC motor power and applied to direct connection method in INMEL- VII. It improved the driving circuits and set switching frequency to 5KHz to eliminate the switching noise caused by PWM control of DC motor, As compare with the INMEL-VI, INMEL-VII is improved in driving stability by transfer the weight center to forward. The results of field testing proved the improvement of the driving stability and software algorithm It has been estimated to have a hlgh practical use for powered walking aids to the disabled's daily life.

  • PDF

An Analysis of Multiple-Vehicle Accidents on Freeways Using Multinomial Logit Model (다항로짓모형을 이용한 고속도로 다중추돌사고 특성 분석)

  • Jeon, Hyeonmyeong;Kim, Jinhee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.5
    • /
    • pp.1-14
    • /
    • 2020
  • The aim of this study is to analyze effects of factors on the number of vehicles involved in traffic accidents on freeway sections. In previous studies about traffic accident severity, the analysis of accidents involving multiple vehicles was insufficient. However, multiple-vehicle accidents are likely to cause casualties and are the main reasons increasing accident duration and social costs. In this study, the number of vehicles involved in an accident was interpreted as the result of the accident, not as the cause of the accident, and the impacts of each accident factor were analyzed using a multinomial logit model. The results indicate that multiple-vehicle accidents are mainly related to following factors: nighttime, driver's faults, obstacles on the road, a downhill slope, heavy vehicles, and freeway mainline sections including tunnels and bridges.

VR-based Hiking System that supports Real-time Field Condition (등산로 조건을 실시간으로 지원하는 VR 기반의 사이버 등산 시스템)

  • Ko, Dae-sik
    • Journal of Platform Technology
    • /
    • v.6 no.4
    • /
    • pp.78-86
    • /
    • 2018
  • In this paper, a VR-based cyber hiking system was designed to provide virtual reality for famous mountains that can offer the real senses and feelings of hiking in supporting environmental factors of actual mountains such as the temperature, air, sound, echoes, etc., of the mountain the user wants to climb. The VR-based cyber hiking system that reflects real-time site conditions is largely consisted of the data collection module that collects data from the live site, multiple drive modules that enables the user to feel real senses using data from the sites, and sensor module to detect the stimuli provided by the drive modules and the user's physical body transition. Unlike existing VR-based hiking systems, the proposed cyber hiking system not only provides simple virtual reality for the wanted mountain, but can also provide the natural conditions of real mountains and implement the uphill and downhill of hiking routes. In particular, it has the effect of providing fun and game elements to users by excluding unnecessary conditions and risks that may arise in actual hiking and instead supporting augmented realities such as squirrels on actual hiking paths. In addition, in providing users with the changes in their body before and after hiking, it is expected to be effective in providing diverse feedback such as the height, gradient, and speed of mountain hiking.