• Title/Summary/Keyword: 내/외부 구속

Search Result 13, Processing Time 0.031 seconds

Confining Stress of Internally Confined Hollow CFT Member Under Compression (압축을 받는 내부 구속 중공 CFT부재의 구속력 평가)

  • Yoon, Na Ri;Won, Deok Hee;Park, Jong Gun;Kang, Young Jong
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.37-37
    • /
    • 2011
  • 최근 세계적인 지진의 발생과 함께 구조물의 내진성능 평가 및 증진 방법에 대하여 많은 연구가 진행 되고 있다. 특히 교량 구조물의 교각의 경우에는 상부구조의 고정하중 및 활하중을 지반에 전달하여 주는 역할을 하기 때문에, 역으로 지진이 발생하였을 경우 교각의 내진성능에 따라서 교량의 안전도에 많은 영향을 미칠 수 있다. 또한 산악지역이 국토의 70%이상을 차지하는 우리나라의 지형적인 특성상 고교각을 이용한 장대교량의 건설이 필요하며 도시지역의 교통량 증가로 인한 도시고속도로의 건설 등 고가교의 필요성이 점차 증가하고 있다. 그러나 CFT(Concrete Filled Tube)부재의 경우에는 콘크리트가 3축 구속 상태로 존재하지만 자중이 크며 내진 성능이 떨어지는 단점을 가지고 있다. 이러한 단점을 보완하기 위하여 CFT부재의 단면을 중공으로 만듦으로써 부재를 경량화하고 내부 튜브를 삽입하여 내부를 구속 시킨 내부 구속 중공 CFT 부재(Internally Confined Hollow CFT Member, ICH CFT)가 개발되었다. 이는 콘크리트가 내 외부 튜브에 의하여 구속되어 3축 구속 상태로 존재함으로써 콘크리트 중공부로의 취성파괴를 방지하여 연성도 및 강도를 향상시켜주며, 단면의 감소로 인해 재료비를 절감 할 뿐 아니라 자중 감소로 인해 내진 설계에도 유리하다. 현재 내부 구속 중공 CFT 부재에 대한 연구가 많이 진행되고 있지만, 튜브를 삽입함으로써 부재의 중공부로 발생하는 구속력의 특성을 해석적으로 정립한 연구는 미비한 실정이다. 본 연구에서는 압축을 받는 중공 CFT 부재에 내부 튜브를 삽입함으로써 발생하는 콘크리트의 구속력을 해석적 연구를 통하여 수행하였으며, 구속력을 파악하기 위한 평가 방법으로는 구속 콘크리트의 중공비와 직경, 외부튜브의 두께, 내부튜브의 두께 등으로 평가하였다. 해석적 연구 결과, 내부 튜브를 삽입함으로써 발생되는 외부 구속력은 이론적 수식에 의한 구속 응력값과 비슷한 값을 가지지만 내부로 발생하는 구속력은 이론적 수식에 의한 구속 응력값에 도달하지 못하는 것을 확인할 수 있었다.

  • PDF

Numerical Evaluation of Stress Loss Rates and Adjusting Coefficients due to Internal and External Constraints of Concrete Long-Term Deformation (콘크리트 장기변형의 내·외부 구속에 의한 응력 손실률 및 수정계수 평가의 전산구조해석)

  • Yon, Jung-Heum;Kim, Hyun-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.4
    • /
    • pp.429-438
    • /
    • 2013
  • An object oriented numerical analysis program of axial-flexural elements and the step-by-step method (SSM) has been developed to analyze concrete long-term behaviors of structures constrained internally and externally. The results of the numerical analysis for simple and continuous prestressed (PS) concrete box and composite girders, pre-cast slab of continuous steel composite girder, and simple preflex composite girder show that the adjusting coefficient decreases by increasing constraint. The loss rates of pre-tension force were not sensitive but those of pre-compression force were increased rapidly by decreasing adjusting coefficient. This indicates that the design based on the loss rate of pre-tension can over-estimate the pre-compression force in a concrete section constrained internally and externally. The adjusting coefficients which satisfy results of the numerical analysis are 0.35~0.95, and it can be used as an index of constraint of concrete long-term deformation. The adjusting coefficient 0.5 of Bridge Design Specifications can under-estimate residual stress of PS concrete slab, and the coefficient 0.7 or 0.8 of LRFD Bridge Designing Specifications can under-estimate the loss rates of continuous PS concrete girders. The adjusting coefficient of hybrid structures should be less then 0.4.

Dynamics Modeling of Plate Treated with Active Constrained Layer Damping (능동 구속층 감쇠 처리된 판의 동적 모델링)

  • Park, C.H.;Kim, W.C.
    • Journal of Power System Engineering
    • /
    • v.1 no.1
    • /
    • pp.124-143
    • /
    • 1997
  • 본 논문은 능동 구속층 감쇠(active constrained layer damping) 처리된 관의 동적 모델링과 정식화를 제시한다. 판의 운동방정식은 Hamilton정리를 이용하여 전개된 판, piezoelectric film 및 점탄성층의 운동방정식을 조합하므로서 유도된다. 이 운동방정식은 외부인가전압의 영향하에서 적층판의 해석적 모델을 제공할 뿐만이 아니라, 판 구조내에서 진동에너지를 감소시킬 수 있는 전단층의 효과에 대한 변위관계식을 나타낸다. 그리고 운동방정식에 대응하는 경계조건도 유도되었다. 또한 판과 능동구속층감쇠계의 동특성을 설명하기 위한 유한요소모델이 유도되었다. 이 모델의 타당성을 실온조건에서 실험적으로 입증하였다. 개발된 이론 및 실험적인 결과들은 판과 능동구속층 감쇠계가 구조진동의 감쇠를 위한 매우 유효한 수단으로 사용될 수 있음을 나타내었다.

  • PDF

Enhanced Durability Performance of High Early Strength Concrete for Early Traffic Opening (조기교통개방 콘크리트의 내구성능 향상에 관한 연구)

  • 원종필;김현호;안태송
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.4
    • /
    • pp.362-370
    • /
    • 2001
  • The internal or external restraint of thermal and dry shrinkage movements could thus generate tensile stresses in concrete pavement for early traffic opening. Restrained shrinkage and thermal stresses could produce microcracks in concrete which increase its permeability and accelerate its long-term deterioration under weathering and load effects. Fiber reinforced concrete is an effective approach to the control of microcrack and crack development under tensile stresses. This study aims at evaluation of the durability of high early strength concrete for early traffic opening and increase of service life. Three different types of regulated-set cement which recently has been used much in Korea were adopted. Fibers were added and their mixtures were compared with plain high early strength concrete mixture. The use of fibers increased durability performance of high early strength concrete using regulated-set cement than the corresponding plain mixtures.

Development of Thermal Stress Measuring System (온도응력 측정용 시험장치의 개발)

  • 전상은;김국한;김진근
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.3
    • /
    • pp.228-236
    • /
    • 2001
  • Even though numerous researches have been performed for the prediction of thermal stresses in mass concrete structures by both analytical and experimental means, the limitations exist for both approaches. In analytical approach, the fundamental limitation is derived from the difficulty of predicting concrete properties such as modulus of elasticity, coefficient of thermal expansion, etc.. In experimental approach, there are many uncertainties related to in-situ conditions, because a majority of researches have focused on measuring thermal stresses in actual and simulated structures. In this research, an experimental device measuring thermal stresses directly in a laboratory setting is developed. The equipment is located in a temperature chamber that follows the temperature history previously obtained from temperature distribution analysis. Thermal strains are measured continuously by a strain gauge in the device and the corresponding thermal stresses are calculated simply by force equilibrium condition. For the verification of the developed device, a traditional experiment measuring thermal strains from embedded strain gauges is performed simultaneously. The results show that the thermal strain values measured by the newly developed device agree well with the results from the benchmark experiment.

Does Geography Matter in Technological Partner Selection? (지식확산과 집적경제를 고려한 기업의 기술협력파트너 위치선정 행태)

  • Jo, Yu-Ri
    • Journal of Technology Innovation
    • /
    • v.19 no.2
    • /
    • pp.153-184
    • /
    • 2011
  • This paper investigates what kind of technological partner firms want to cooperate with in terms of partner location. Two geographical factors are considered. One is geographical proximity, given the tradeoff between the effectiveness of knowledge spillovers in proximity and diverse knowledge absorption from geographically distant partners. The other is how many other firms are co-located with potential partners because it is known that clustering regions can create more technological outputs. Analysis on 2008 Korea Innovation Survey data finds that partner proximity is the single most important factor in choosing a cooperation partner. While firms that are located in a region crowded with related industries prefer proximate partners, others that are surrounded by unrelated industries are more likely to cooperate with distant partners. The findings suggest that geographical proximity matters in partner selection because it not only stimulates knowledge spillovers but also reduces costs involving R&D cooperation such as monitoring costs and information costs. Moreover, firms take into consideration both the benefits and risks of clustering regions. If there are so many unrelated firms that they create agglomeration diseconomies such as congestion costs and unintentional knowledge leakages, firms are more likely to try to find their cooperation partners in other regions.

  • PDF

Constitutive Relation of Concrete to Predict P-M Interaction Strength of Rectangular CFT Short Columns (콘크리트충전 각형강관단주의 P-M 조합강도 예측을 위한 콘크리트 구성방정식)

  • Lee, Cheol Ho;Kang, Ki Yong;Kim, Sung Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.1
    • /
    • pp.31-42
    • /
    • 2015
  • The plastic stress distribution method and the strain compatibility method are the two representative methods to calculate the P-M interaction strength of RCFT (rectangular concrete filled tube) columns. The plastic stress distribution method is approximate while the stress compatibility method should approach the exact solution if accurate constitutive relations of the materials involved are used. Recent study by the authors pointed out that, because of lack of accurate constitutive model for the concrete confined by the rectangular steel tube, no strain compatibility method according to the current structural provisions provides a satisfactory prediction of the P-M interaction strength of RCFT columns under various material combinations. An empirical constitutive model which can capture the stress-strain characteristics of the confined concrete of RCFT columns is proposed based on analyzing extensive exisitng test database. The key idea was to define the concrete crushing strain as a function of steel-to-concrete strength ratio and width-to-thickness ratio of steel tube. It was shown that the proposed model leads to more accurate and more consistent prediction of the P-M interaction strength of RCFT columns under general design conditions.

Experimental Investigation on Seismic Performance of RC Circular Columns Strengthened Using Highly-Ductile PET-AF Fiber Strand (고연성 PET-AF 스트랜드로 외부 보강한 RC 원형 기둥의 내진 성능에 관한 실험적 연구)

  • Chinzorigt, Gombosuren;Kim, So-Young;Choi, Donguk;Lim, Myung-Kwan;Lee, Chin-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.56-66
    • /
    • 2017
  • In this study, seismic strengthening performance of RC circular columns reinforced with high ductile PET and hybridized fibers(HF, PET + aramid) strand was experimentally compared and investigated. As a result, the maximum flexural strength and ductility capacity of all reinforced columns were improved than control column and fiber rupture did not occur at the ultimate stage. In addition, the resistive strength and displacement of the PET sheet 25 layers reinforcing column and the HF strand 1 layer reinforcing column were almost similar, so that 1 layer of HF strand showed the same lateral confinement effect as the PET sheet 25 layers. As a result of this experimental study, PET is considered to be suitable as seismic reinforcement material for RC structures in terms of flexural strength and ductility. However, in order to increase the possibility of application in the field, it is necessary to use a prefabricated PET sheet such as HF used in this study. The durability of PET needs investigation in the future.

Behavior Characteristics of Shear Connector for Composite Behavior of Steel Composite Columns (강합성 부재의 합성거동을 위한 전단 연결재의 거동 특성)

  • Won, Deok Hee;Han, Taek Hee;Kim, Seungjun;Lee, Jung Hwa;Kang, Young Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.1993-1999
    • /
    • 2013
  • Steel composite structures have been studied in various areas such as bridges, high rise buildings, and wind towers. They show excellent structural performance through overcoming of the weaknesses of steel and concrete. Although various methods were already developed to achieve full composite behavior between steel and concrete in flexural members, the number of studies regarding composite columns is quite limited. If slip occurs between concrete and steel under external loads, the performance of the composite column would be reduced significantly. Connection methods ensuring full composite action between steel and concrete must be suggested. This paper investigated about structural behavior of shear studs through a series of experimental tests. Extensive parameters were also performed to understand the effects of the diameter of stud, space of stud and height of concrete. The present study provides fundamental bases for further development of design method of shear studs in composite columns.

Mechanical Properties of High-Early-Strength Concrete for Early Traffic Opening (조기교통개방 콘크리트의 강도특성)

  • Won, Jong-Pil;Kim, Hyun-Ho;Ahn, Tae-Song
    • International Journal of Highway Engineering
    • /
    • v.3 no.2 s.8
    • /
    • pp.123-130
    • /
    • 2001
  • This study was performed to enhance mechanical properties of high-early-strength concrete using regulated-set cement for early traffic opening with various mixtures. Restraint of moisture and thermal movements of concrete pavement in actual field conditions, by external or internal restraining factors, generates tensile stresses which introduce microcracks and thus reduce the mechanical properties of concrete. Fiber reinforcement of concrete is an effective approch to the control of microcrack and crack development under tensile stresses. Three different types of regulated-set cement which recently have been used in Korea and two different types of fiber were adopted. Fibers were added and their mixtures are compared with plain high-early-strength concrete mixture. From the test results, fiber reinforced concrete was increased mechanical properties of high-early-strength concrete using regulated-set cement than the plain concrete.

  • PDF