• Title/Summary/Keyword: 납석광상

Search Result 30, Processing Time 0.024 seconds

Mineralogical Characteristics and Designation of Key Beds for the Effective Surveys of the Jeonnam Pyrophyllite Deposits (전남일원 납석광상의 광물학적 특성과 효과적 탐사를 위한 Key Beds의 선정)

  • Yoo, Jang-Han;Kim, Yong-Ug;Lee, Gill-Jae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.4
    • /
    • pp.297-305
    • /
    • 2009
  • Ores of the Jeonnam pyrophyllite province mainly consist of not only pyrophyllite but also kaolinite, and they usually contain minor amounts of muscovite and quartz. We usually call them as porcelaneous stones which usually show lower grade characteristics in the viewpoint of Korean nonmetallic industries. Mineralogical studies for the ores and their intimate formations revealed that another kind of clay minerals could have been produced from the volcanic sediments with similar ages and compositions. Corundum is commoner than the diaspore in the pyrophyllite deposits, and so diaspore can be regarded as one of temporary minerals from which corundum would be finally formed. Kaolinite deposits contain neither diaspore nor corundum, but alunites produced by an advanced argillic alteration are often observed in the upper portions of the kaolin ores. The lowest formation interbedded with pyrophyllite and/or kaolinite ores usually contain purple tuff bed on the uppermost part, and in ascending order, siliceous formation, fine ash tuff and lapillistone are found in the study areas. As ages are becoming younger, amounts of pyrophyllite and kaolinite are radically decreased, or disappeared completely. On the other hand, content of muscovite is slightly increased, and those of plagioclase feldspars and quartz are found to have been preserved from the original rocks during alteration process. Most of ore bodies show rather well bedded formations which are easily discernable in the outcrops, but more effective discremination is desirable where rather massive ores exist. Siliceous beds and purple tuff ones on the upper part of ore bodies would be useful as marker horizons or key beds which have distinct lithologies and extensions.

국내산 납석의 부존현황 및 광물특성

  • 노진환;고상모
    • Mineral and Industry
    • /
    • v.18 no.1
    • /
    • pp.1-17
    • /
    • 2005
  • 국내의 납석 광상은 대부분 백악기의 화산암류들이 열수변질되어 형성된 광상으로서, 주로 전남 및 경남 지역에 밀집되어 분포한다. 납석은 지질 여건상 주로 경상분지 내에 국제적인 규모의 풍부한 부존자원이 있지만, 그 동안의 개발에 의해서 고품위 황석들은 상당히 채진된 상황이다. 현재 개발되고 있는 광체들은 몇 곳의 광산을 제외하고는 대부분 저품위 광상을 이루고 있기 때문에, 새로운 광체의 탐광이 이루어지지 않는다면 앞으로 고품위 광석에 관한 한 국내의 수요를 충당하기 어려운 상황에 이를 것으로 예견된다. 현재 국내에서 납석으로 개발되고 있는 광석의 상당수(대략 $40\%$ 정도)가 엄밀한 의미에서는 사실상 납석이 아닌 고령토나 견운모 광석인 것으로 밝혀졌다. 엽납석을 함유하는 정상적인 형태의 납석들은 그수반 점토광물상에 의거하여 (l) 엽납석질, (2) 딕카이트질. (3) 일라이트질 및 (4) 딕카이트-일라이트질 유형으로 구분될 수 있다. 고령토 광물로는 대부분 딕카이트가 수반되고 외국에서는 흔히 수반되는 것으로 알려져 있는 고령석은 거의 함유되지 않는 것이 특징이다. 석영은 납석에서 점토광물 못지않게 그 용도를 가름하는 주요 성분으로서 대부분의 광석 유형에서 수반되지만 특히 일라이트질 납석에서 흔히 그리고 보다 많이 수반되는 양상을 보인다. X-선회절 정랑분석법은 납석의 품위를 산정하는데 유력한 수단이 될 수 있다. 특히 납석 이외의 점토광물들의 조성, 특히 일라이트의 함유 정도는 납석의 용도별 품위와 품질을 가름하는 주요 사항이다. 화학분석에 의한 납석의 평가 방식은 특히 납석의 백색 도기류와 같은 각종 세라믹스 제조 용도에서의 품질 평가에 결정적인 단서를 제공하는 유력한 평가수단이다. 특히 착색유발 성분인 철분의 존재와 그 함량을 정하고 요업용도에서 중요한 $Al_3O_3$와 알칼리 성분 함량을 검증하는데 필수적인 평가 방법이다. 이외에 주사전자현미경 관찰을 통해서 납석의 주요 품질 기준이 되는 극미립상 엽납석의 결정형, 조직 및 미시적 산출상태를 보다 정밀하게 평가할 수 있는 방안을 제공한다. 현행 광업법상의 납석을 비롯한 관련 광종들의 광물분류 체계가 모호하게 설정되어 있고 관련 인허가 부서에서의 전문성 및 지도력 부족으로 관련 산업계에 심각한 비효율성과 오류가 야기되고 있는 실정이다. 이를 개선하기 위해서는 납석의 광석평가 방식이 그 품위와 품질 개념 하에서 응용광물학적으로 적용되어야 할 것이다.

  • PDF

Geological Occurrence and Mineralogy of Pyrophyllite Deposits in the Jinhae Area (진해 납석광상의 산상과 광물학적 특성)

  • Kwack, Kyo-Won;Hwang, Jin-Yeon;Oh, Ji-Ho;Yoon, Keun-Taek;Chi, Sei-Jeong
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.163-176
    • /
    • 2009
  • The pyrophyllite deposits located in Jinhae area have been studied through field observations and laboratory works including the X-ray diffraction (XRD), X-ray fluorescence (XRF), Electron probe microanalyzer (EPMA) and Inductively Coupled Plasma (ICP). The pyrophyllite deposits consist of mainly illite, dickite, pyrophyllite, diaspore, chlorite, pyrite and copiapite. According to the mineral assemblages, geological occurrences and alteration modes, the altered rocks can be classified into four types: Type A; quartz with silicifictaion, Type B; quartz + illite with illitization, Type C; quartz + dickite + illite with kaolin alteration, Type D; pyrophyllite + illite + dickite + diaspore with pyrophyllite alteraion. Rocks in Type A, which is generated by silicifictaion, have high $SiO_2$ contents more than 90 wt% and distinctive equigranular textures with microcrtstalline quartz. The pyrophyllites from the study area belong to 2M polytype. The host rocks of the pyrophyllite ore in this mine are rhyolitic rock, andecitic tuff and volcanic breccia. The alteration products seem to be controlled by the different lithology of the host rocks. The hydrothermal solution formed the deposits would be inferred to the acidic and have relatively high ionic activity of hydrogen and silica judging from alteration mineral assemblage. Pyrophyllite alteraion zone is generated by highest temperature condition of all alteration zone.

Mineralogy and Genesis of Hydrothermal Deposits in the Southeastern Part of Korean Peninsula: (3) Miryang Napseok Doposits (우리나라 동남부지역의 열수광상에 대한 광물학적 및 광상학적 연구: (3) 밀양납석 광상)

  • Kim, Soo-Jin;Kim, Jeong-Jin;Choo, Chang-Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.5 no.2
    • /
    • pp.93-101
    • /
    • 1992
  • Several "Napseok" mines are distribute in the Miryang area where the volcanic rocks are hydrothermally altered. The "Napseok" are pyrophyllite and dickite, with a small amount of silicates such as quartz, illite, tosudite and dumortierite. Other associated minerals are oxides, hydroxides, sulfides, sulfates and phosphates. Pyrophyllite which occurs as 2M polytype exhibits that the basal spacing increases due to dehydroxylation at 750${\circ}C$. Halloysite shows tubular forms. Wavellite is precipitated in fissures during the latest stage of the hydrothermal alteration process. Five mineral zones, that is pyrophyllite-deckite, illite, halloysite, silica, and albite-chlorite zones, are recognized with decreasing alteration degree. Clay minerals were formed by leaching of Si and alkali ions fron the country rocks, considering mineral assemblages, pyrophyllite polytype and thermodynamical data reported in the literature, temperatures of formation of main clay deposits are assumed to be 270 to 350${\circ}C$.

  • PDF

Hydrothermal Alteration Related to Cretaceous Felsic Magmatism in the Gusi Mine, Southern Korea (전남 해남지역 구시광상의 화산활동에 수반된 열수변질작용 및 생성환경)

  • Moon, Hi-Soo;Roh, Yul;Kim, In-Joon;Song, Yungoo;Lee, Hyun Koo
    • Economic and Environmental Geology
    • /
    • v.24 no.1
    • /
    • pp.9-20
    • /
    • 1991
  • Gusi pyrophyllite deposit is located in the Haenam volcanic field in the southwestern part of the Korea Peninsula. This area is known for the occurrences of pyrophyllite, alunite and dickite. This volcanic field is composed of andesite, rhyolite and pyroclastic rocks of late Cretaceous age The pyroclastic rocks are hydrothermally altered to pyrophyllite and kaolin minerals forming the Gusi deposits. The hydrothermally altered rock can be classified into the following zones on the basis of their mineral assemblages: quartz, pyrophyllite, dickite and illite-smectite zones, from the centre to the margins of the alteration mass. Such mineral assemblages indicate that the country rocks, most of which are the lower Jagguri Tuff, were altered by strongly acidic hydrothermal solutions with high aqueous silica and potassium activity and that the formation temperature of pyrophyllite is higher than $265^{\circ}C$. The mechanism of the hydrothermal alteration is considered to be related to felsic magmatism.

  • PDF

Preliminary Study on the Application of Remote Sensing to Mineral Exploration Using Landsat and ASTER Data (Landsat과 ASTER 위성영상 자료를 이용한 광물자원탐사로의 적용 가능성을 위한 예비연구)

  • Lee, Hong-Jin;Park, Maeng-Eon;Kim, Eui-Jun
    • Economic and Environmental Geology
    • /
    • v.43 no.5
    • /
    • pp.467-475
    • /
    • 2010
  • The Landsat and ASTER data have been used in mineralogical and lithological studies, and they have also proved to be useful tool in the initial steps for mineral exploration throughout Nevada mining district, US. Huge pyrophyllite quarry mines, including Jungang, Samsung, Kyeongju, and Naenam located in the southeastern part of Gyeongsang Basin. The geology of study area consists mainly of Cretaceous volcanic rocks, which belong into Cretaceous Hayang and Jindong Group. They were intruded by Bulgugsa granites, so called Sannae-Eonyang granites. To extraction of Ratio model for pyrophyllite deposits, tuffaceous rock and pyrophyllite ores from the Jungang mine used in reflectance spectral analysis and these results were re-sampled to Landsat and ASTER bandpass. As a result of these processes, the pyrophyllite ores spectral features show strong reflectance at band 5, whereas strong absorption at band 7 in Landsat data. In the ASTER data, the pyrophyllite ores spectral features show strong absorption at band 5 and 8, whereas strong reflectance at band 4 and 7. Based on these spectral features, as a result of application of $Py_{Landsat}$ model to hydrothermal alteration zone and other exposed sites, the DN values of two different areas are 1.94 and 1.19 to 1.49, respectively. The differences values between pyrophyllite deposits and concrete-barren area are 0.472 and 0.399 for $Py_{ASTER}$ model, 0.452 and 0.371 for OHIb model, 0.365 and 0.311 for PAK model, respectively. Thus, $Py_{ASTER}$ and $Py_{Landsat}$ model proposed from this study proved to be more useful tool for the extraction of pyrophyllite deposits relative to previous models.

Some Aspects of Kaoline-Pyrophyllite Deposits in Southern Korea (한반도(韓半島) 남부지역(南部地域)의 고령토-납석광상(鑛床) 생성기구(生成機構))

  • Sang, Ki Nam
    • Economic and Environmental Geology
    • /
    • v.19 no.spc
    • /
    • pp.43-52
    • /
    • 1986
  • Kaolin-pyrophyllite are locally abundant in the three hydrothermal areas at Yangsan-Tongnae area, Hadong-Sancheong area and Haenam area, deposits are originally composed of acidic volcanic rocks and anorthositic rocks in Hadong-Sancheong area. The clay deposits are formed in the near shallow depths environment through acid hydrothermal alteration. Hadong-Sancheong halloysite deposits are formed by alteration of anorthosite. These differences are mainly on the various country rocks, geological structure and properties of hydrothermal solutions. Country rock is mostly underlain by rhyolitic tuffaceous and anorthositic rocks and a large number of clay deposits were formed during volcanic activity through upper Cretaceous-lower Tertiary. Intrusive rocks is broadly distributed in this area and clay deposits are variable in shapelayer and funnel typed. Zonal pattern of mineral assemblage is as follows, Yangsan-Tongnae deposits-kaolinite, pyrophyllite, dumortierite, andalusite and sericite, Hadong-Sancheong-mostly halloysite, and Haenam-dickite, pyrophyllite, alunite and diaspore. The difference in the zonal pattern of altered rock is considered to depend on differences in the initial acidity of related hydrothermal solution, initial acidity was controlled by the oxygen fugacity.

  • PDF

Hydrothermal Alteration of Miryang Pyrophyllite Deposit (밀양납석광상의 열수변질 특징)

  • Moon, Dong Hyeok;Kwak, Kyeong Yoon;Lee, Bu Yeong;Koo, Hyo Jin;Cho, Hyen Goo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.265-277
    • /
    • 2015
  • Hydrothermal alteration patterns and environment are studied by mineral assemblages and chemical analyses of surface and core samples from Miryang pyrophyllite deposit. The alteration zones of this deposit can be divided into three zones on the basis of mineral assemblage; advanced argillic, phyllic, and propylitic zone. Advanced argillic zone mainly consists of pyrophyllite-dickite (-quartz) and corresponds to principal mining ore. The common mineral assemblage of phyllic zone and propylitic zone are sericite-quartz-dickite and chlorite-quartz, respectively. Horizontal and vertical alteration patterns and major element geochemistry indicate that pyrophyllite ores have been formed several times by hydrothermal alteration. And it also suggests that the huge ore bodies may be extended from the deeper part of recent quarries to the south-southeastern direction. The paragenesis of ore minerals and polytype (2M) suggest that ore deposit was formed at about $300-350^{\circ}C$.