• Title/Summary/Keyword: 남부

Search Result 2,674, Processing Time 0.029 seconds

Characteristics and Controlling Factors on Nickel Laterite Deposits in Sulawesi, Indonesia (인도네시아 술라웨시 니켈 라테라이트 광상의 특성과 광화 규제 요인)

  • Younggi Choi;Byounghan Kim
    • Economic and Environmental Geology
    • /
    • v.56 no.3
    • /
    • pp.343-363
    • /
    • 2023
  • Sulawesi island, as a global producer of nickel resources, is leading the rapid growth of nickel industry of Indonesia. Nickel laterite deposits in Sulawesi was formed by lateritization of the world-scale East Sulawesi Ophiolite (ESO) under the active tectonic setting and tropical rainforest climate. In this paper, exploration cases for nickel laterite deposits in five regions of Sulawesi are reported. Regional characteristics on nickel laterite deposits in Sulawesi are understood based on various exploration activities such as outcrop, trench and pit survey, petrological observation, geochemical analysis, and interpretation of drilling data, etc.. In the northeastern part of 'Southeast-Arm', which is a strategic location for nickel industry of Indonesia, ESO is extensively exposed to the surface. In the Morombo and Morowali regions, typical high-grade saprolite-type orebodies with a thickness of 10 to 20 m occur. The cases showed that topographic relief tends to regulate Ni-grade distribution and orebody thickness, and that high grade intervals tend to occur in places where joints and garnierite veins are dense. In the Tinanggea and South Palangga regions in the southern part of the Southeast-Arm, overburden composed of Neogene to Quaternary deposits is a major factor affecting the preservation and profitability of nickel laterite deposits. Despite the overburden, high-grade saprolite-type orebodies composed of Ni-bearing serpentine with garnierite veins occur in a thickness of around 10 m to secure economic feasibility. In contrast, in the Ampana region in the northern part of 'East-Arm', low-grade nickel laterite deposits with immature laterite profile was identified, which is thought to be the result of active denudation due to tectonic uplift. Exploration cases in this paper will help to understand characteristics and controlling factors on nickel laterite deposits in Sulawesi, Indonesia.

Analysis of Optimal Locations for Resource-Development Plants in the Arctic Permafrost Considering Surface Displacement: A Case Study of Oil Sands Plants in the Athabasca Region, Canada (지표변위를 고려한 북극 동토 지역의 자원개발 플랜트 건설 최적 입지 분석: 캐나다 Athabasca 지역의 오일샌드 플랜트 사례 연구)

  • Taewook Kim;YoungSeok Kim;Sewon Kim;Hyangsun Han
    • The Journal of Engineering Geology
    • /
    • v.33 no.2
    • /
    • pp.275-291
    • /
    • 2023
  • Global warming has made the polar regions more accessible, leading to increased demand for the construction of new resource-development plants in oil-rich permafrost regions. The selection of locations of resource-development plants in permafrost regions should consider the surface displacement resulting from thawing and freezing of the active layer of permafrost. However, few studies have considered surface displacement in the selection of optimal locations of resource-development plants in permafrost region. In this study, Analytic Hierarchy Process (AHP) analysis using a range of geospatial information variables was performed to select optimal locations for the construction of oil-sands development plants in the permafrost region of southern Athabasca, Alberta, Canada, including consideration of surface displacement. The surface displacement velocity was estimated by applying the Small BAseline Subset Interferometric Synthetic Aperture Radar technique to time-series Advanced Land Observing Satellite Phased Array L-band Synthetic Aperture Radar images acquired from February 2007 to March 2011. ERA5 reanalysis data were used to generate geospatial data for air temperature, surface temperature, and soil temperature averaged for the period 2000~2010. Geospatial data for roads and railways provided by Statistics Canada and land cover maps distributed by the North American Commission for Environmental Cooperation were also used in the AHP analysis. The suitability of sites analyzed using land cover, surface displacement, and road accessibility as the three most important geospatial factors was validated using the locations of oil-sand plants built since 2010. The sensitivity of surface displacement to the determination of location suitability was found to be very high. We confirm that surface displacement should be considered in the selection of optimal locations for the construction of new resource-development plants in permafrost regions.

Determining the Authenticity of Labeled Traceability Information by DNA Identity Test for Hanwoo Meats Distributed in Seoul, Korea (DNA 동일성 검사를 통한 서울지역 유통 한우육의 표시 이력정보 진위 판별)

  • Yeon-jae Bak;Mi-ae Park;Su-min Lee;Hyung-suk Park
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.1
    • /
    • pp.12-18
    • /
    • 2023
  • Beef traceability systems help prevent the distribution of Hanwoo (Korean native cattle) meat as imported beef. In particular, assigning a traceability number to each cattle can provide all information regarding the purchased Hanwoo meat to the consumers. In the present study, a DNA identity test was conducted on 344 samples of Hanwoo meat from large livestock product stores in Seoul between 2021 and 2022 to determine the authenticity of important label information, such as the traceability number. Traceability number mismatch was confirmed in 45 cases (13.1%). The mismatch rate decreased to 11.3% in 2022 from 14.7% in 2021, and the mismatch rate was higher in the northern region (16.9%) than in the southern region (10.2%). In addition, of the six brands, B and D showed satisfactory traceability system management, whereas E and A showed poor traceability system management, with significant differences (P<0.001). The actual traceability number confirmation rate was only 53.9% among the mismatch samples. However, examination of the authenticity of label information of the samples within the identified range revealed false marking in the order of the traceability number (13.1%), sex (2.9%), slaughterhouse name (2.2%), and grade (1.6%); no false marking of breed (Hanwoo) was noted. To prevent the distribution of erroneously marked livestock products, the authenticity of label information must be determined promptly. Therefore, a legal basis must be established mandating the filling of a daily work sheet, including the traceability number of beef, in partial meat subdivisions. Our findings can be used as reference data to guide the management direction of traceability systems for ensuring transparency in the distribution of livestock products.

High Grain Quality Mid-late Maturing Rice Cultivar 'Yechan' with Lodging Tolerance and Multiple Disease Resistance (내도복 복합내병 최고품질 중만생 벼 '예찬')

  • Baek, Man-Kee;Park, Hyun-Su;Nam, Jeong-Kwon;Cho, Young-Chan;Kim, Ki-Young;Kim, Jeong-Ju;Kim, Woo-Jae;Shin, Woon-Chul;Jeung, Ji-Ung;Kim, Choon-Song;Jeong, Jong-Min;Lee, Keon-Mi;Park, Seul-Gi;Lee, Chang-Min;Suh, Jung-Pil;Lee, Jeom-Ho
    • Korean Journal of Breeding Science
    • /
    • v.51 no.4
    • /
    • pp.504-514
    • /
    • 2019
  • 'Yechan' is a high grain quality mid-late maturing rice cultivar with lodging tolerance and multiple disease resistance. It was a derived from a cross between 'Hopum' and 'Iksan537' (cultivar name 'Haepum'). 'Hopum' is a high grain quality mid-late maturing rice cultivar with strong lodging tolerance and 'Haepum' is a high grain quality medium maturing rice cultivar with multiple disease resistance. To shorten the breeding period, another culture method was applied to the F1 plants. 'Yechan' was selected through the pedigree method, yield trials, and local adaptability tests, with a high selection pressure for grain quality, lodging, and disease resistance. The heading date of 'Yechan' was August 14, one day later than that of 'Nampyeong'. 'Yechan' is a cultivar tolerant to lodging and it has short culms. It has multiple disease resistance against rice blast, rice stripe virus, and bacterial blight, including the K3a race, the most virulent race in Korea. The yield of 'Yechan' was similar to that of 'Nampyeong'. 'Yechan' showed excellent grain appearance, superior taste when cooked, and enhanced milling performance; thus, we concluded that it could contribute to the improvement of Korean japonica rice cultivar quality. 'Yechan', a high grain quality mid-late maturing rice cultivar with lodging tolerance and multiple disease resistance, would be suitable for cultivation in the southern plain area in Korea and has been utilized in the breeding programs aimed at enhancing the grain quality and stability for the cultivation of Korean japonica rice (Registration No. 7647).

Analysis of Co- and Post-Seismic Displacement of the 2017 Pohang Earthquake in Youngilman Port and Surrounding Areas Using Sentinel-1 Time-Series SAR Interferometry (Sentinel-1 시계열 SAR 간섭기법을 활용한 영일만항과 주변 지역의 2017 포항 지진 동시성 및 지진 후 변위 분석)

  • Siung Lee;Taewook Kim;Hyangsun Han;Jin-Woo Kim;Yeong-Beom Jeon;Jong-Gun Kim;Seung Chul Lee
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.1
    • /
    • pp.19-31
    • /
    • 2024
  • Ports are vital social infrastructures that significantly influence both people's lives and a country's economy. In South Korea, the aging of port infrastructure combined with the increased frequency of various natural disasters underscores the necessity of displacement monitoring for safety management of the port. In this study, the time-series displacements of Yeongilman Port and surrounding areas in Pohang, South Korea, were measured by applying Permanent Scatterer Interferometric Synthetic Aperture Radar (PSInSAR) to Sentinel-1 SAR images collected from the satellite's ascending (February 2017-July 2023) and descending (February 2017-December 2021) nodes, and the displacement associated with the 2017 Pohang earthquake in the port was analyzed. The southern (except the southernmost) and central parts of Yeongilman Port showed large displacements attributed to construction activities for about 10 months at the beginning of the observation period, and the coseismic displacement caused by the Pohang earthquake was up to 1.6 cm of the westward horizontal motion and 0.5 cm of subsidence. However, little coseismic displacement was observed in the southernmost part of the port, where reclamation was completed last, and in the northern part of the oldest port. This represents that the weaker the consolidation of the reclaimed soil in the port, the more vulnerable it is to earthquakes, and that if the soil is very weakly consolidated due to ongoing reclamation, it would not be significantly affected by earthquakes. Summer subsidence and winter uplift of about 1 cm have been repeatedly observed every year in the entire area of Yeongilman Port, which is attributed to volume changes in the reclaimed soil due to temperature changes. The ground of the 1st and 2nd General Industrial Complexes adjacent to Yeongilman Port subsided during the observation period, and the rate of subsidence was faster in the 1st Industrial Complex. The 1st Industrial Complex was observed to have a westward horizontal displacement of 3 mm and a subsidence of 6 mm as the coseismic displacement of the Pohang earthquake, while the 2nd Industrial Complex was analyzed to have been little affected by the earthquake. The results of this study allowed us to identify the time-series displacement characteristics of Yeongilman Port and understand the impact of earthquakes on the stability of a port built by coastal reclamation.

Monitoring of Bathymetry Changes in the Coastal Area of Dokdo, East Sea (동해 독도 연안 해저지형 변동 모니터링 연구)

  • Chang Hwan Kim;Soon Young Choi;Won Hyuck Kim;Hyun Ok Choi;Chan Hong Park;Yun Bae Kim;Jong Dae Do
    • Economic and Environmental Geology
    • /
    • v.56 no.5
    • /
    • pp.589-601
    • /
    • 2023
  • We compare high-resolution seabed bathymetry data and seafloor backscattering data acquired, using multi-beam, between 2018 and 2021 to understand topographic changes in the coastal area of Dokdo. The study area, conducted within a 500 m × 500 m in the southern coast between the islands where Dongdo Port is located, has been greatly affected by human activities, waves and ocean currents. The depth variations exhibit between 5 - 70 m. Irregular underwater rocks are distributed in areas with a depth of 20 m or less and 30 - 40 m. As a whole, water depth ranges similar in the east-west direction and become flatter and deeper. The bathymetry contour in 2020 tends to move south as a whole compared to 2018 and 2019. The south moving of the contours in the survey area indicates that the water depth is shallower than before. Since the area where the change in the depth occurred is mainly formed of sedimentary layers, the change in the coast of Dokdo were mainly caused by the inflow of sediments, due to the influence of wind and waves caused by these typhoons (Maysak and Haishen) in 2020. In the Talus area, which developed on the shallow coast between Dongdo and Seodo, the bathymetry changed in 2020 due to erosion or sedimentation, compared to the bathymetry in 2019 and 2018. It is inferred that the changes in the seabed environment occur as the coastal area is directly affected by the typhoons. Due to the influence of the typhoons with strong southerly winds, there was a large amount of sediment inflow, and the overall tendency of the changes was to be deposited. The contours in 2021 appears to have shifted mainly northward, compared to 2020, meaning the area has eroded more than 2020. In 2020, sediments were mainly moved northward and deposited on the coast of Dokdo by the successive typhoons. On the contrary, the coast of Dokdo was eroded as these sediments moved south again in 2021. Dokdo has been largely affected by the north wind in winter, so sediments mainly move southward. But it is understood that sediments move northward when affected by strong typhoons. Such continuous coastal change monitoring and analysis results will be used as important data for longterm conservation policies in relation to topographical changes in Dokdo.

Effect of Accelerated Storage on the Microstructure and Water Absorption Characteristics of Korean Adzuki Bean (Vigna angularis L.) Cultivar (팥의 가속화 저장에 따른 미세구조 및 수분흡수 특성)

  • Jieun Kwak;Seon-Min Oh;You-Geun Oh;Yu-Chan Choi;Hyun-Jin Park;Suk-Bo Song;Jeong-Heui Lee;Jeom-Sig Lee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.3
    • /
    • pp.167-174
    • /
    • 2023
  • This study investigated the microstructure and water absorption characteristics of the Korean adzuki bean (Vigna angularis L.) cultivar under accelerated storage. The germination rate, acid value, redness (a*), and yellowness (b*) values showed no significant differences after three months of storage compared to pre-storage under low temperatures (4℃). However, a statistically significant difference was observed under accelerated high temperatures (45℃). In particular, after storage for three months, the germination rate and acid value were 0% and 33.63 mg KOH/100g, respectively, under accelerated high temperatures. After storage for three months, the holes, hilum damage, and spaces between the seed coat and cotyledon shortened the time and speed of water absorption under accelerated high temperatures compared to that under low temperatures. Conversely, further research is required to investigate the reason for the low rate of parallel water absorption.

Sorghum Field Segmentation with U-Net from UAV RGB (무인기 기반 RGB 영상 활용 U-Net을 이용한 수수 재배지 분할)

  • Kisu Park;Chanseok Ryu ;Yeseong Kang;Eunri Kim;Jongchan Jeong;Jinki Park
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.521-535
    • /
    • 2023
  • When converting rice fields into fields,sorghum (sorghum bicolor L. Moench) has excellent moisture resistance, enabling stable production along with soybeans. Therefore, it is a crop that is expected to improve the self-sufficiency rate of domestic food crops and solve the rice supply-demand imbalance problem. However, there is a lack of fundamental statistics,such as cultivation fields required for estimating yields, due to the traditional survey method, which takes a long time even with a large manpower. In this study, U-Net was applied to RGB images based on unmanned aerial vehicle to confirm the possibility of non-destructive segmentation of sorghum cultivation fields. RGB images were acquired on July 28, August 13, and August 25, 2022. On each image acquisition date, datasets were divided into 6,000 training datasets and 1,000 validation datasets with a size of 512 × 512 images. Classification models were developed based on three classes consisting of Sorghum fields(sorghum), rice and soybean fields(others), and non-agricultural fields(background), and two classes consisting of sorghum and non-sorghum (others+background). The classification accuracy of sorghum cultivation fields was higher than 0.91 in the three class-based models at all acquisition dates, but learning confusion occurred in the other classes in the August dataset. In contrast, the two-class-based model showed an accuracy of 0.95 or better in all classes, with stable learning on the August dataset. As a result, two class-based models in August will be advantageous for calculating the cultivation fields of sorghum.

A study on spatial onset characteristics of flash drought based on GLDAS evaporative stress in the Korean Peninsula (GLDAS 증발 스트레스 기반 한반도 돌발가뭄의 공간적 발생 특성 연구)

  • Kang, Minsun;Jeong, Jaehwan;Lee, Seulchan;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.10
    • /
    • pp.631-639
    • /
    • 2023
  • Flash drought (FD), characterized by the rapid onset and intensification, can significantly impact ecosystems and induce immediate water stress. A more comprehensive understanding of the causes and characteristics of FD events is required to enhance drought monitoring. Therefore, we investigated the FD events took place over the Korean peninsula using Global Land Data Assimilation System (GLDAS) data from 2012 to 2022. We first detected FD events using the stress-based method (Standardized Evaporative Stress Ratio, SESR), and analyzed the frequency and duration of FDs. The FD events were classified into three cases based on the variations in Actual Evapotranspiration (AET) and potential Evapotranspiration (PET), and spatially analyzed. Results revealed that there are regional disparities in frequency and duration of FDs, with a mean frequency of 6.4 and duration of 31 days. When classified into Case 1 (normal condition), Case 2 (AET-driven), and Case 3 (PET-driven), we found that Case 2 FDs emerged approximately 1.5 times more frequently than those driven by PET (Case 3) across the Korean peninsula. Case 2 FDs were found to be induced under water-limited conditions, and led both AET and PET to be decreased. Conversely, Case 3 FDs occurred under energy-limited conditions, with increase in both. Case 2 FDs predominantly affected the northwestern and central-southern agricultural regions, while Case 3 occurred in the eastern region, characterized by forested land cover. These findings offers insights into our understanding of FDs over the Korean peninsula, considering climate factors, land cover, and water availability.

Utilization of Smart Farms in Open-field Agriculture Based on Digital Twin (디지털 트윈 기반 노지스마트팜 활용방안)

  • Kim, Sukgu
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2023.04a
    • /
    • pp.7-7
    • /
    • 2023
  • Currently, the main technologies of various fourth industries are big data, the Internet of Things, artificial intelligence, blockchain, mixed reality (MR), and drones. In particular, "digital twin," which has recently become a global technological trend, is a concept of a virtual model that is expressed equally in physical objects and computers. By creating and simulating a Digital twin of software-virtualized assets instead of real physical assets, accurate information about the characteristics of real farming (current state, agricultural productivity, agricultural work scenarios, etc.) can be obtained. This study aims to streamline agricultural work through automatic water management, remote growth forecasting, drone control, and pest forecasting through the operation of an integrated control system by constructing digital twin data on the main production area of the nojinot industry and designing and building a smart farm complex. In addition, it aims to distribute digital environmental control agriculture in Korea that can reduce labor and improve crop productivity by minimizing environmental load through the use of appropriate amounts of fertilizers and pesticides through big data analysis. These open-field agricultural technologies can reduce labor through digital farming and cultivation management, optimize water use and prevent soil pollution in preparation for climate change, and quantitative growth management of open-field crops by securing digital data for the national cultivation environment. It is also a way to directly implement carbon-neutral RED++ activities by improving agricultural productivity. The analysis and prediction of growth status through the acquisition of the acquired high-precision and high-definition image-based crop growth data are very effective in digital farming work management. The Southern Crop Department of the National Institute of Food Science conducted research and development on various types of open-field agricultural smart farms such as underground point and underground drainage. In particular, from this year, commercialization is underway in earnest through the establishment of smart farm facilities and technology distribution for agricultural technology complexes across the country. In this study, we would like to describe the case of establishing the agricultural field that combines digital twin technology and open-field agricultural smart farm technology and future utilization plans.

  • PDF