본 논문에서는 싱글 야외 영상에서 날씨 분류를 위한 계층적 이미지 트리 모델을 정의하고, 영상의 밝기와 k-평균 세분화 영상을 이용한 날씨 분류 알고리즘을 제안하였다. 계층적 이미지 트리 모델의 첫 번째 레벨에서 실내와 야외 영상을 구분하고, 두 번째 레벨에서는 야외 영상이 주간, 야간 또는 일출/일몰 영상인지를 밝기 영상과 k-평균 세분화 영상을 이용하여 판단하였다. 마지막 레벨에서는 두 번째 레벨에서 주간 영상으로 분류된 경우 에지 맵과 안개 율을 기반으로 맑은 영상 또는 안개 영상인지를 최종 추정하였다. 실험 결과, 날씨 분류가 설계 규격대로 수행됨을 확인할 수 있었으며, 제안하는 방법이 주어진 영상에서 효과적으로 날씨 특징이 검출됨을 보였다.
본 논문에서는 모바일 기반 AR 환경에서 RGB카메라로부터 얻은 영상 분석과 DB 기반의 특징점(Feature point) 매칭을 통하여 보다 정확하게 위험 상황을 알려줄 수 있는 프레임워크를 제안한다. 본 논문에서는 RANSAC(Random sample consensus)기반의 다중 평면 방식을 이용한 특징점을 추출하고 분석하여 영상에 존재하는 장애물을 감지한다. RGB카메라로 얻은 영상을 기반으로 장애물을 검출하는 접근법은 영상에 의존하기 때문에 조명에 따른 특징점 검출이 부정확하고, 조명이나 자연광 또는 날씨에 영향을 많이 받기 때문에 어둡거나 흐린 날씨에서는 장애물 검출이 어려워진다. 이 문제를 완화하기 위해 본 논문에서는 DB기반의 특징점 매칭을 통해 조명에 관계없이 장애물을 효율적이고 정확하게 감지한다. 특징점 매칭을 이용하려면 우선 영상에서 특징점이 안정적으로 추출될 수 있는 환경인, 조명이나 자연광이 충분한 환경에서 감지된 장애물 정보를 데이터베이스화 하여 저장한다. 조명이 충분하지 않은 환경에서 사용자가 사전에 저장된 지역에 근접할 경우 특징점 분석이 아닌 DB 기반 특징점 매칭을 통해 위험 요소를 감지한다. 우리의 방법은 조명의 여부의 관계없이 효과적으로 위험을 감지할 수 있기 때문에 다양한 분야에 활용될 수 있다.
이 연구는 바닷가에서 경험할 수 있는 시청각적 경험을 표현요소로 활용하여 일상생활에서 바다를 느낄 수 있도록 하는 인터랙티브 스크린세이버 제작에 관한 것이다. 특징적인 사항은 시스템의 시간에 따라 360도로 바다경관을 볼 수 있으며, 사용자의 감성은 날씨에 민감하다는 점에 착안하여 날씨의 표현을 다양화 하였고 바다의 소리를 동기화하여 호출하는 방식으로 제작하였다.
영상 검지기를 통한 차량 탐지 방법은 날씨와 같은 환경에 민감하게 반응하여 차량의 미탐지 및 오탐지가 발생하게 된다. 이를 해결하기 위해 다양한 일기조건하에서 차량 추적 방법에 대해 제안한다. 다양한 일기 조건하에서의 차량 추적은 눈, 비, 안개 환경에서 각 날씨의 특징을 분석, 반영하여 차량을 탐지하고 추적한다. 눈이 내리는 환경에서는 눈이 카메라 가까이에서 차량 blob으로 잘못 탐지되는 blob을 제거하기 위해 카메라와의 거리에 따른 실제 크기를 구하는 size filtering 방법을 사용한다. 비, 안개 환경에서는 흐릿해진 영상 때문에 차량이 교통신호등에 의해 차량 정체시 여러 차량이 하나의 blob으로 탐지되는 문제점을 해결하기 위해 이전 영상에서의 차량 위치 정보를 이용한 재 blob화 방법을 사용한다.
도로주행 영상에서의 객체 검출에 관한 기존의 연구들은 날씨 및 조명 상태에 따른 객체 검출의 어려움 때문에 대부분 맑은 날씨의 영상을 대상으로 연구가 진행되었다. 본 논문에서는 도로주행 영상의 다양한 날씨 및 조명 상태를 먼저 판단하고, 이를 기반으로 도로 이정표에 대한 색상모델을 설정하여 이정표 객체를 찾는 방법을 제안한다. 제안한 방법은 5종류의 도로 이미지 특징을 이용하여 맑음, 흐림, 비, 야간, 역광으로 날씨 및 조명 상태를 먼저 분류하고, 각각의 상태에서 대상 이정표 색상의 픽셀값의 범위를 추출하여 GMM(Gaussian Mixture Model)을 생성하고 이를 객체 추출에 사용한다. 날씨 및 조명이 다양하게 변하는 도로주행 영상에 제안한 방법을 적용하여 이정표 영역이 안정적으로 찾아지는 것을 확인할 수 있었다.
본 논문에서는 날씨 변화에 따른 실외 LED 전광판의 시인성 확보를 위한 딥러닝 구조 개발에 관한 연구를 제안한다. 제안하는 기법은 영상장치를 이용한 딥러닝을 사용하여 날씨 변화에 따른 LED 휘도를 자동 조절함으로써 실외 LED 전광판의 시인성을 확보한다. 날씨 변화에 따른 LED 휘도를 자동 조절하기 위하여, 먼저 평면화된 배경 부분 이미지 데이터에 대한 전처리 과정을 거친 후, 합성곱 네트워크를 이용하여 학습시켜 날씨에 대한 분류를 진행할 수 있는 딥러닝 모델을 만들어낸다. 적용된 딥러닝 네트워크는 Residual learning 함수를 사용하여 입력값과 출력값의 차이를 줄임으로써 초기의 입력값의 특징을 가지고 가면서 학습하도록 유도한다. 다음에 날씨를 인식하여 날씨 변화에 따라 실외 LED 전광판의 휘도를 조절하는 제어기를 사용하여 주변 환경이 밝아지면 휘도가 높아지도록 변경하여 선명하게 보이도록 한다. 또한, 주변 환경이 어두워지면 빛의 산란에 의해 시인성이 떨어지기 때문에 전광판의 휘도가 내려가도록 하여 선명하게 보이도록 한다. 본 논문에서 제안하는 방법을 적용하여 LED 전광판의 날씨 변화에 따른 휘도 측정의 공인 측정 실험 결과는, 날씨 변화에 따라 실외 LED 전광판의 시인성이 확보됨을 확인하였다.
본 논문에서는 날씨와 같은 외부 환경요인에도 강건하게 동작할 수 있는 장애물 감지 기법을 제안한다. 특히, DB 기반의 특징 매칭과 RANSAC(RANdom SAample Consensus)기반의 다중 평면 방식을 통해 증강현실(Augmented Reality, AR)에서 정확하게 위험 상황을 알려줄 수 있는 장애물 감지 시스템을 제안한다. RGB카메라로부터 얻은 영상을 기반으로 장애물을 검출하는 접근법은 영상에 의존하기 때문에 조명에 따른 특징 검출이 부정확하고, 조명이나 자연광 또는 날씨의 영향을 받기 때문에 장애물 검출이 어려워진다. 또한, 복잡한 지형에서 생성되는 다수의 평면은 장애물을 감지하는데 있어서 오차가 커지는 원인이 된다. 이 문제를 완화하기 위해 본 논문에서는 DB기반의 특징 매칭을 통해 조명에 관계없이 장애물을 효율적이고 정확하게 감지한다. 또한, 다중 평면을 RANSAC을 통해 단일 평면으로 정규화하여 특징점을 분류하기 위한 기준을 새롭게 계산한다. 결과적으로 제안하는 방법은 조명, 자연광, 날씨에 관계없이 효율적으로 장애물을 감지할 수 있고, 높낮이나 다른 지형에서도 안정적으로 표면을 감지할 수 있기 때문에 사용자의 안전성 확보에 활용할 수 있을 거라 기대한다. 제안하는 방법은 모바일 디바이스에서 실험한 결과가 대부분 안정적으로 실내/외의 장애물들을 인지하였다.
본 논문에서는 디지털 카메라를 통해 얻어진 자동차 영상으로부터 이산코사인변환(Discrete Cosin Transform : DCT)를 이용한 자동차번호판 추출방법을 제안한다. 번호판은 문자와 배경으로 이루어져 있으며 번호판 내에는 문자들이 조밀하게 모여 있다는 특징과 번호판 영역이 직사각형으로 되어 있다는 것을 이용하여 DCT에 의해서 자동차영상에서 수직, 수평, 대각선 성분만을 추출한후 이 추출된 에지영상에서 코릴레이션(Correlation)을 이용하여 번호판영역을 검출하고 이 검출된 번호판영역을 투영 히스토그램(Histogram)에 의해서 날씨가 흐리거나 아주 밝거나 밤에 찍은 영상들에 대해서는 번호판 추출이 힘들었다. 그러나 제안된 본 논문은 날씨와 납과 밤에 상관없이 일관된 번호판 영상을 추출할 수 있었다.
차세대 지능적 무기체계의 자동화를 목표로 SAR(Synthetic Aperture Radar) 영상 신호를 이용한 표적 인식률 향상을 위한 여러가지 방법들이 제안되어 왔다. 기존의 연구들은 SAR 영상의 고차원 특징을 그대로 사용했기 때문에 표적 인식의 성능저하가 있었다. 본 연구에서는 정보 획득 거리가 길고, 날씨에 제약이 없이 전천후 작전 운용이 가능하도록 레이더의 특징과 고해상도 영상을 결합한 SAR 이미지를 이용한 표적 인식률 향상 방법을 제안한다. 효과적인 표적 인식을 하기위해 고차원의 특징벡터를 저차원의 특징벡터로 축소하는 PCA(Principal Component Analysis)를 기반으로 하는 SVM(Support Vector Machine)을 사용한 표적 인식 기법을 사용하였고, PCA 기반의 SVM 분류기를 이용한 표적 인식이 SVM 만을 사용한 표적 인식보다 향상된 성능을 보인 것을 확인하였다.
대한원격탐사학회 2001년도 춘계 학술대회 논문집 통권 4호 Proceedings of the 2001 KSRS Spring Meeting
/
pp.38-41
/
2001
본 연구는 2000년 9월4일 Landsat ETM+ 위성화상자료에 기초하여 산출된 연무지수(haze index)를 서울시 구별로 비교, 분석하였다. 태슬모자형 변환(Tesseled Cap transformation)의 제 4특징인 연무지수를 산출하기 위해 6개의 계수를 새로 구하였다. 시정거리가 21.5km인 비교적 좋은 날씨상태에서 강남구와 서초구의 경우 다른 구에 비해 월등히 연무지수가 높게 나타났다. 그리고 강북지역의 연무지수는 강남지역보다 낮다. 비교적 높은 연무지수를 갖는 강북지역의 구는 용산구, 종로구, 노원구이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.