• Title/Summary/Keyword: 날개속도 비

Search Result 69, Processing Time 0.022 seconds

Visualization of Flow Field of Weis-Fogh Type Water Turbine Using the PIV (PIV를 이용한 Weis-Fogh형 수차의 유동장 가시화)

  • Ro, Ki Deok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.3
    • /
    • pp.191-197
    • /
    • 2017
  • In this study, the visualization of the unsteady flow field of a Weis-Fogh-type water turbine was investigated using particle-image velocimetry. The visualization experiments were performed in a parameter range that provided relatively high-efficiency wing conditions, that is, at a wing opening angle ${\alpha}=40^{\circ}$ and at a velocity ratio of the uniform flow to the moving wing U/V = 1.5~2.5. The flow fields at the opening, translational, and closing stages were investigated for each experimental parameter. In the opening stage, the fluid was drawn in between the wing and wall at a velocity that increased with an increase in the opening angle and velocity ratio. In the translational stage, the fluid on the pressure face of the wing moved in the direction of the wing motion, and the boundary layer at the back face of the wing was the thinnest and had a velocity ratio of 2.0. In the closing stage, the fluid between the wing and wall was jetted at a velocity that increased as the opening angle decreased; however, the velocity was independent of the velocity ratio.

A Convergent Study on Flow at Rotor of Washing Machine (세탁기 내부의 회전날개에서의 유동에 관한 융합 연구)

  • Choi, Kye-Kwang;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.10
    • /
    • pp.237-241
    • /
    • 2020
  • The flow analyses in this study were executed on the three washing machine models with the rotors like real shapes. On the pressures and speeds for the left, right and bottom planes of rotors, model C was generally found to have the greatest pressure on the flow, more than twice as much as model A, and in order of model B and model A. At the streamline velocities of flow on the side of the rotating blades of models A, B and C, model C had the greatest rate of flow overall, which was 1.7 times higher than model A, followed by model B and model A. In case of model C, the number of blades is smaller than model A or model B, but the thickness of lower rotor becomes thicker. It can be seen that model C improves the washing performance due to the high flow pressure and high flow rate. Also, it is seen that this study is adequate at the efficient design with durability of the washing machine rotor practically and the aesthetic convergence of the rotor.

Aerodynamic Effect on the Flow Field under the Wing with Varying Aspect Ratio (가로세로비에 따른 날개 하부 유동장의 공기역학적 영향)

  • Cho, Cheolyoung;Park, Jongho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.2
    • /
    • pp.94-101
    • /
    • 2016
  • In this paper, aerodynamic effects on the flow field under the wing with varying aspect ratio were investigated by measuring pressures on the lower surface of wing and analysing velocity components using Particle Image Velocimetry at Reynolds numbers of $1.384{\times}10^5$ and $2.306{\times}10^5$. In case of aspect ratio 4.8 which keeps the wing tip at a distance of 80% chord length from the pylon, the vortex from the wing tip influenced the flow field under the wing by reducing static pressures on the lower surface and increasing the velocity in proximity of the wing tip. Throughout the results, it is observed that aerodynamic effects of wing tip on the flow field around pylon under wing become insignificant as the aspect ratio increases.

Calculation of Hydrodynamic Characteristics of Weis-Fogh Type Water Turbine Using the Advanced Vortex Method (개선 와법을 이용한 Weis-Fogh형 수차의 유체역학적 특성계산)

  • Ro, Ki Deok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.3
    • /
    • pp.203-210
    • /
    • 2014
  • In this study, the hydrodynamic characteristics of Weis-Fogh type water turbine were calculated by the advanced vortex method. The wing (NACA0010 airfoil) and both channel walls were approximated by source and vortex panels, and free vortices are introduced away from the body surfaces. The distance from the trailing edge of the wing to the wing axis, the width of the water channel and the maximum opening angle were selected as the calculation parameters, the important design factors. The maximum efficiency and the power coefficient for one wing of this water turbine were 26% and 0.4 at velocity ratio U/V=2.0 respectively. The flow field of this water turbine is very complex because the wing moves unsteadily in the channel. However, using the advanced vortex method, it could be calculated accurately.

CFD Analysis of Submersible Slurry Pump with Two Blades (2엽 수중 슬러리 펌프 임펠러 전산해석)

  • Yun, Jeong-Eui
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.3
    • /
    • pp.263-268
    • /
    • 2011
  • We aimed to develop a non-clogging submersible slurry pump with two blades to replace the conventional vortex pump. To do this, we simulated the effect of parameters such as the blade angle $\beta$ and the blade-length angle $\alpha$ on pump efficiency. We used the commercial codes ANSYS CFX and BladeGen. The results showed that the best blade shape was obtained for $\beta$ = $30^{\circ}$ and that the pump efficiency was proportional to $\alpha$ in the simulated range.

Theoretical Prediction of Noise Generated by Unsteady Loading of Marine Propellers (프로펠러의 비정상하중에 의해 발생하는 소음의 이론적 추정)

  • Chang-Sup Lee;Chung-Ho Cho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.3
    • /
    • pp.29-40
    • /
    • 1999
  • A numerical method in frequency domain for the analysis of the acoustic wave equation governing the sound field generated by a non-cavitating propeller under a steady of unsteady loading condition is developed. Theory shows that only multiples of the blade passage frequency exist and that the wave number consists of the frequency component due to the nonuniformity of the wake and the Doppler effect originated from the rotation of the blades. Correlation with experiments for a two bladed propeller, designed to be load-free at a particular advance speed, indicate that the thickness effect can be significant in steady case, but can be negligible compared to the unsteady loading effect.

  • PDF

Development of a Preswirl Stator-Propeller System for Improvement of Propulsion Efficiency : a Symmetric Stator Propulsion System (추진 효율 향상을 위한 고정날개-프로펠러 추진시스템 개발: 대칭형 고정날개 추진 시스템)

  • Jin-Tae Lee;Moon-Chan Kim;Jung-Chun Suh;Soo-Hyung Kim;Jin-Keun Choi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.4
    • /
    • pp.132-145
    • /
    • 1992
  • A series of design, theoretical analysis and model test procedures is presented for the development of an axisymmetric stator-propeller system. A preswirl stator is located in front of a propeller in order to improve the propulsion efficiency by cancellation of the slip stream rotational velocity due to the propeller. Model test results show that propulsion efficiency gain due to the symmetric stator-propeller system is about 3% compared to the single propeller. This efficiency gain would increase for full scale application since the pressure drag coefficient of the stator would decrease due to increasement of turbulent intensity behind the hull wake and increasement of Reynolds number.

  • PDF

Analysis of End-Plated Propellers by Panel Method (패널법에 의한 날개끝판부착 프로펠러의 해석)

  • C.S. Lee;I.S. Moon;Y.G. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.4
    • /
    • pp.55-63
    • /
    • 1995
  • This paper describes the procedure to analyze the performance of the end-plated propeller(EPP) by a boundary integral method. The screw blade(SB) and end-plate(EP) are represented by a set of quadrilateral panels, where the source and normal dipole of uniform strength are distributed. The perturbation velocity potential, being the only unknown via the potential-based formulation, is determined by satisfying the flow tangency condition on the blade and the end-plate at the same time. The Kutta condition is satisfied through an iterative process by requiring the null pressure jump across the upper and lower sides of the trailing edges of both the SH and the EP. Sample calculations indicate that the EP increases the loading near the tip of the SB while spreading the trailing vortices along the trailing edge of the EP, thus avoiding the strong tip-vortex formation. Predicted performance of the EPP shows good correlations with the experimental results. The method is therefore considered applicable in designing and analyzing the EPP which may be an alternative for energy-saving propulsive devices.

  • PDF

Vibration Control of Composite Wing-Rotor System of Tiltrotor Aircraft (틸트로터 항공기 복합재료 날개의 진동 제어)

  • Song, Oh-Seop
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.6
    • /
    • pp.509-516
    • /
    • 2007
  • Mathematical modeling and vibration control of a tiltrotor aircraft composite wing-rotor system are investigated in this study. A wing-mounted rotor can be tilted from the vertical position to a horizontal one, and vice versa. Effect of vibration control of the wing-rotor system via piezoelectricity is studied as a function of tilt angle, ply angle of composite wing and rotor's spin speed. Composite wing is modeled as a thin-walled box beam having a circumferentially uniform stiffness configuration that produces elastic coupling between flap-lag and between extension-twist behavior. Numerical simulations are provided and pertinent conclusions are outlined.

Development of a Preswirl Stator Propulsion System for a 300K VLCC (30만톤 초대형 유조선을 위한 전류고정날개 추진 시스템 개발)

  • Jin-Tae Lee;Moon-Chan Kim;Suak-Ho Van;Ki-Sup Kim;Ho-Chung Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.1
    • /
    • pp.1-13
    • /
    • 1994
  • Procedures for the development of a preswirl stator-propulsion system for a VLCC 300K are described in this paper. The preswirl stator-propulsion system is one of the compound propulsor systems, which is used for the purpose of recovering propeller slipstream rotational energy by locating a stator in front of the propeller. The preswirl stator-propulsion system can be considered as a most reliable energy saving device because of its simple mechanism. Five stators are designed for the existing hull form and propeller, and their effects are verified by model tests. Open-water test result of the preswirl stator-propulsion system at the cavitation tunnel show $4{\sim}6%$ increase of open-water efficiency compared to that of a propeller without stators. Maximum 6.5% decrease of delivered power at the design speed(15.5knots) is expected with the designed stator based on the analysis results of resistance and self-propulsion test at the towing tank.

  • PDF