• Title/Summary/Keyword: 난류 천이

Search Result 123, Processing Time 0.025 seconds

ANALYSIS OF LAMINAR AND TURBULENT MIXED FLOW AROUND AN AIRFOIL (익형 주위의 층류와 난류가 혼합된 유동해석)

  • Kim, C.W.;Lee, Y.G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.87-89
    • /
    • 2009
  • In the present paper, transition turbulence model is applied to the NACA64(3)618 and detailed flow features are studied. The turbulence model is sensitive to the boundary layer grid quality and y+ of the grid was limited to 1. The prediction of the transition region is dependent on the local flow condition. The pressure coefficient distribution of the transition turbulence model is compared with that of the fully turbulent mode and the drag distribution of the transition turbulence model was compared with that of the wind tunnel test.

  • PDF

A Study on the Release Rate of Hazardous Materials from Liquid Pipeline (액체배관으로부터 위험물질 누출속도 산정에 관한 연구)

  • Tak Song-Su;Jo Young-Do
    • Journal of the Korean Institute of Gas
    • /
    • v.6 no.1 s.17
    • /
    • pp.81-85
    • /
    • 2002
  • This paper presents the calculation methods of liquid release rate in the transition region when hazardous materials leak from the pipeline due to an unwanted accident. For the laminar and turbulent flow region, liquid release rate from a pipeline can be calculated by using a commercial software or by using calculator based on the models(equations) suggested by Crowl and Louvar et al. However, there has been no corresponding model for the transition flow region. In this paper. we showed that the turbulent model may be used as an equation generally used in the transition region for conservative hazard analysis if safety factor $30\%$ is added to the value calculated by the turbulent model. In this regard, we first calculated the release rate from liquid pipeline in the transition region by using experimental data on Fanning friction factor depending on Reynolds number which Lap-Mou Tam et al. had introduced, then compared it with that of the laminar and turbulent models in transition region.

  • PDF

An Experimental Study on Turbulent Diffusion Flame in Double Coaxial Air Jets(II) (동축이중 공기분류중의 난류확산화염에 관한 실험적 연구 II)

  • 조용대;최병윤
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1234-1243
    • /
    • 1990
  • Double coaxial are jets(annular and coaxial air jets) between which propane gas is fed was selected to study the structure of diffusion flames in turbulent shear flow. Schlieren and direct photographs are taken to visualize the flame structure. Mean and fluctuating temperatures and ion currents were measured to investigate the macroscopic and the instantaneous flame structure. The objective of this study is to understand the interaction between combustion and mixing process especially in the transition region of turbulent shear flow. The investigation reported in this paper focuses on the macroscopic and the instantaneous structures of three flames obtained. The increased mixing effect resulting from increase of Reynolds number of central air jet makes the flame bluish and short. When the velocity of surrounding air stream is higher than that of central air jet, the instantaneous flame structure is composed of coherent structure. It is considered that the flame structure of transitional region of mixing layer depends on the structure of mixing layer of non-reacting conditions.

Transition Phenomenon from a Flat Flame to Turbulent Flame Motions by External Laser (외부 레이저에 의한 평면화염에서 난류화염거동까지의 천이현상)

  • Park, June Sung;Choi, Byung Chul;Fujita, Osamu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.12
    • /
    • pp.1209-1215
    • /
    • 2012
  • Experiments with premixed flames in a tube have been conducted to investigate the transition phenomenon from a laminar flat flame to turbulent motions. To induce this phenomenon, a flat flame is formed in a tube. Then, the local velocity at the center of the flat flame surface is increased using $CO_2$ laser irradiation. The deformed flame front propagates with an increase in the total flame surface and oscillating instability. Eventually, the flame front accelerates explosively, and it shows turbulent flame motions with a strong noise. The dynamic behaviors of the flame front prior to the turbulent motions are analyzed in this study to elucidate this process. The physical model of the process is presented according to observations.

Numerical Study of Wavy Film Flow on Vertical Plate Using Different Turbulent Models (난류 모형에 따른 수직 평판 위 파동 액막류의 수치해석 연구)

  • Min, June Kee;Park, Il Seouk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.5
    • /
    • pp.373-380
    • /
    • 2014
  • Film flows applied to shell-and-tube heat exchangers in various industrial fields have been studied for a long time. One boundary of the film flow interfaces with a fixed wall, and the other boundary interfaces with a gaseous region. Thus, the flows become so unstable that wavy behaviors are generated on free surfaces as the film Reynolds number increases. First, high-amplitude solitary waves are detected in a low Reynolds number laminar region; then, the waves transit to a low-amplitude, high frequency ripple in a turbulent region. Film thickness is the most significant factor governing heat transfer. Since the wave accompanied in the film flow results in temporal and spatial variations in film thickness, it can be of importance for numerically predicting the film's wavy behavior. In this study, various turbulent models are applied for predicting low-amplitude ripple flows in turbulent regions. The results are compared with existing experimental results, and finally, the applied turbulent models are appraised in from the viewpoint of wavy behaviors.

Flow Characteristics of Transitional Boundary Layers on a Flat Plate Under the Influence of Freestream Turbulent Intensity (자유유동 난류강도 변화에 따른 평판위 천이 경계층의 유동특성에 관한 실험적 연구)

  • Shin, Sung-Ho;Jeon, Woo-Pyung;Kang, Shin-Hyoung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.9
    • /
    • pp.1335-1348
    • /
    • 1998
  • Flow characteristics in transitional boundary layers on a flat plate were experimentally investigated under three different freestream conditions i. e. uniform flow with 0.1 % and 3.7% freestream turbulent intensity and cylinder-wake with 3.7% maximum turbulent intensity. Instantaneous streamwise velocities in laminar, transitional and turbulent boundary layers were measured by I-type hot-wire probe. For estimation of wall shear stresses on the flat plate, measured mean velocities near the wall were applied to the principle of Computational Preston Tube Method (CPM). Distributions of skin friction coefficients were reasonably predicted in all developed boundary layers. Intermittency profiles, which were estimated using Conditional Sampling Technique in transitional boundary layers, were also consistent with previously published data. It was predicted that the incoming turbulent intensity had more influence on transition onset point and transition process than freestream turbulent intensity existed just over the transition region. It was also confirmed that non-turbulent and turbulent profiles in transitional boundary layers could not be simply treated as Blasius and fully turbulent profiles.

Direct Numerical and Large Eddy Simulations of Transitional Flows around Turbulence Stimulators at Very Low Speeds (초저속 영역에서 난류 촉진기 주위 천이 유동의 직접 수치 및 대형 와 모사)

  • Lee, Sang Bong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.3
    • /
    • pp.265-273
    • /
    • 2018
  • Direct numerical and large eddy simulations of transitional flows around studs installed on flat plate and bulbous bow have been performed to investigate an effectiveness of turbulence stimulators on laminar-to-turbulence transition at a very low speed. The flow velocity was determined to be 0.366m/s corresponding to 4 knots of full-scale ship speed when the objective ship was Kriso container ship. The spatial evolution of skin friction coefficient disclosed that a fully development of turbulence was observed behind the second stud installed on flat plate while a rapid transition from laminar to turbulence gave rise to the fully development of turbulence behind the first stud installed on bulbous bow. A comparison of streamwise mean velocity profiles showed that the viscous sublayer and log-layer were in good agreement with previous results although the friction velocity of Smagrosinsky sub-grid scale model was about 10% larger than that of direct numerical simulation. While the turbulence intensities of bulbous bow was similar to those of flat plate in inner region, larger intensities of turbulence were observed in outer region of bulbous bow than those of flat plate.

Influence of Vapor Phase Turbulent Stress to the Onset of Slugging in a Horizontal Pipe (기체상의 난류 응력이 수평 유동관 내에서의 Slugging에 미치는 영향에 관한 연구)

  • Park, Jee-Won
    • Nuclear Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.45-52
    • /
    • 1995
  • In influence of the vapor phase turbulent stress (i.e., the too-phase Reynolds stress) to the characteristics of two-phase system in a horizontal pipe has been theoretically investigated. The average two-fluid model has been constituted with closure relations for stratified flow in a horizontal pipe. A vapor phase turbulent stress model for the regular interface geometry has been included. It is found that the second order waves propagate in opposite direction with almost the same speed in the moving frame of reference of the liquid phase velocity. Using the well-posedness limit of the two-phase system, the dispersed-stratified How regime boundary has been modeled. Two-phase Froude number has been found to be a convenient parameter in quantifying the onset of slugging as a function of the global void fraction. The influence of the taper phase turbulent stress was found to stabilize the flow stratification.

  • PDF

Bottom Friction of Surface Waves and Current Flow (천해파와 해류에 의한 해저면 마찰력)

  • 유동훈;김지웅
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.12 no.3
    • /
    • pp.130-138
    • /
    • 2000
  • The friction factor equation of open channel flow is developed by using Prandtl's mixing length theory and considering the flow characteristics of smooth or rough turbulent flow. BYO model considers vertical velocity profile for the (:omputation of bottom friction of surface waves and current flow. The model computes the mean bottom friction of combined wave-current flow by the vectorial summation of wave velocity and current velocity at Bijker point. The near bottom flow is discriminated by three flow regimes; smooth, transitional and rough turbulent flow. The model, BYO, has been further refined considering the combination of smooth turbulent flow and rough turbulent flow.

  • PDF

Numerical Study of Turbulence Modeling for Analysis of Combustion Instabilities in Rocket Motor (로켓엔진의 연소 불안정 해석을 위한 난류 모델링의 수치적 연구)

  • 임석규;노태성
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.2
    • /
    • pp.75-84
    • /
    • 2002
  • A numerical analysis of unsteady motion in solid rocket motors with a nozzle has been conducted. The numerical formulation including modified $\kappa$-$\varepsilon$ turbulence model treats the complete conservation equation for the gas phase and the one-dimensional equations in the radial direction for the condensed phase. A fully coupled implicit scheme based on a dual time-stepping integration algorithm has been adopted to solve the governing equations. After obtaining a steady state solution, pulse and periodic oscillations of pressure are imposed at the head-end to simulate acoustic oscillations of a travelling-wave motion in the combustion chamber. Various steady and unsteady state features in the combustion chamber of a rocket motor has been analyzed as results of numerical calculations.