• Title/Summary/Keyword: 난류확산화염

Search Result 92, Processing Time 0.026 seconds

Combustion Characteristics of a Turbulent Diffusion Flat Flame According to Oxygen Enriched Concentration of Combustion Air (연소공기의 산소부화농도에 따른 난류확산 평면화염의 연소특성)

  • Kwark, Ji-Hyun;Jeon, Chung-Hwan;Chang, Young-June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.3
    • /
    • pp.281-288
    • /
    • 2004
  • Combustion using oxygen enriched air is an energy saving technology that can increase thermal efficiency by improving the burning rate and by increasing the flame temperature. Flame figures, OH radical intensities, temperature distributions and emissions concentration were examined according to oxygen enriched concentration(OEC) in a turbulent diffusion flat flame. As long as the oxygen enriched concentration was increased, the length and volume of the flat flame was decreased while OH radical intensity was raised and the flame temperature was increased. However, RMS of the fluctuating temperature was decreased, and more homogeneous temperature field was formed. Thermal NO also was increased with increase of oxygen enriched concentration, but CO was decreased due to the increase of chemical reaction rate.

A Study on the Combustion Characteristics of Diffusion Flame with the Fuel Injection Condition (연료분출 조건에 따른 확산화염의 연소특성에 관한 연구)

  • Lee, Sung-No;An, Jin-Geun
    • Clean Technology
    • /
    • v.13 no.4
    • /
    • pp.300-307
    • /
    • 2007
  • The combustion characteristics of diffusion flame formed in the wake of a cylindrical stabilizer with varying fuel injection angle were studied. This study was performed by measuring the flame stability limits, lengths and temperatures of recirculation zones of flames, turbulence intensity in the wake of stabilizer, and concentration distribution of combustion gas, and by taking photographs of flames. The flame stability limits are dependent on fuel injection angle and main air velocity. The length and temperature of recirculation zone are dependent on fuel injection angle. As the length of the recirculation zone is decreased, the flame shows more stable behavior. The temperature of recirculation zone has a maximum value at the condition of theoretical mixture. The flame stability is enhanced when the temperature in the recirculation zone decreases. The turbulence intensity in the wake of stabilizer is independent of the fuel injection angle, but it is affected by stabilizer itself and main air flow condition. If the stabilization characteristics of flame is good, the concentration of $C_3H_8$ is high, but the concentration of $CO_2$ is low at the boundary of recirculation zone. The combustion characteristics of diffusion flame can be controlled by changing the fuel injection angles. The appropriate fuel injection angle should be selected to get high combustion efficiency, high load power, low environmental pollution, and clean combustion condition of fuel.

  • PDF

The Effect of N2 Dilution on the Flame Stabilization in a Non-Premixed Turbulent H2 Jet with Coaxial Air (질소 희석이 수소 난류확산화염의 화염안정성에 미치는 영향)

  • Oh, Jeong-Seog;Yoon, Young-Bin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.7
    • /
    • pp.477-485
    • /
    • 2009
  • The study of nitrogen dilution effect on the flame stability was experimentally investigated in a non-premixed turbulent lifted hydrogen jet with coaxial air. Hydrogen gas was used as a fuel and coaxial air was used to make flame liftoff. Each of hydrogen and air were injected through axisymetric inner and outer nozzles ($d_F=3.65\;mm$ and $d_A=14.1\;mm$). And both fuel jet and coaxial air velocity were fixed as $u_F=200\;m/s$ and $u_A=16\;m/s$, while the mole fraction of nitrogen diluents gas was varied from 0.0 to 0.2 with 0.1 step. For the analysis of flame structure and the flame stabilization mechanism, the simultaneous measurement of PIV/OH PLIF laser diagnostics had been performed. The stabilization point was selected in the most upstream region of the flame base and defined as the point where the turbulent flame propagation velocity was equal to the axial component of local flow velocity. We found that the turbulent flame propagation velocity increased with the decrease of nitrogen mole fraction. We concluded that the turbulent flame propagation velocity was expressed as a function of turbulent intensity and axial strain rate, even though nitrogen diluents mole fraction was changed.

연소현상의 가시화

  • 정석호
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.61-83
    • /
    • 2005
  • 연소현상의 가시화를 위한 몇 가지 레이저 진단기법의 응용 예를 소개한다. 이에는 유동 가시화를 위한 반응성 Mie 산란, 주화학종의 계측을 위한 Rayleigh 및 Raman 산란, 미소화학종 계측을 위한 레이저유도 형광법, 온도계측을 위한coherent anti-Stokes Raman 산란법 및 매연계측을 위한 광 소멸/산란법 등이 포함된다. 이러한 기법들이 확산화염, 층류 및 난류 부상 화염, 비예혼합 와도 내의 화염전파, 매연생성 등의 연구에 적용되어 물리적 메커니즘을 이해하는데 유용하게 적용된 사례를 보고한다.

  • PDF

An Experimental Study on Flame Structure and Combustion Characteristics of Turbulent Diffusion Flame(II) (난류확산화염의 화염구조와 연소특성에 관한 실험적 연구(2))

  • Choe, Byeong-Ryun;Jang, In-Gap;Choe, Gyeong-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.3
    • /
    • pp.1050-1060
    • /
    • 1996
  • Recently, attention has been paid to the flame diagnostic by noncontact methods which dose not deform the flame shape. One of them is a method which is using the radical luminous intensity. Generally, this diagnostic method using radical luminous has been investigated its reliability by applying to laminar flame. This study, however, investigated each radical luminous signals through stocastical analysis like auto-correlation, cross-correlation, phase and coherence which were acquired from measuring radical luminous intensity of OH, CH, $O_{2}$, radicals in turbulent diffusion flame. To compare radical luminous intensity in flame with temperature, ion current and concentration , radious distribution of each properties was investigated and considered. In radical luminous intensity, correlation in the reaction zone of flame was higher than in correlation in combusted gas zone. And radious distribution of radical luminous intensity was corresponded with radious distribution of temperature, ion current and concentration. The result of the study confirms that a radical luminous flame diagnosis is possible in the turbulent diffusion flame.

Experimental Study on Combustion Noise Characteristics in Turbulent Jet Diffusion Flames (난류 제트확산화염의 연소소음 특성에 관한 실험연구)

  • 김호석;오상헌
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1253-1263
    • /
    • 1994
  • The experimental study is carried out to identify the combustion generated noise mechanism in free turbulent jet diffusion flames. Axial mean fluctuating velocities in cold and reacting flow fields were measured using hot-wire anemometer and LDv.The overall sound pressure level and their spectral distribution in far field with and without combustion were also measured in an anechoic chamber. The axial mean velocity is 10-25% faster and turbulent intensities are about 10 to 15% smaller near active reacting zone than those in nonreacting flow fields. And sound pressure level is about 10-20% higher in reacting flow fields. It is also shown that the spectra of the combustion noise has lower frequency characteristics over a broadband spectrum. These results indicate that the combustion noise characteristics in jet diffusion flames are dominated by energy containing large scale eddies and the combusting flow field itself. Scaling laws correlating the gas velocity and heat of combustion show that the acoustic power of the combustion noise is linearly proportional to the 3.8th power of the mean axial velocity rather than 8th power in nonreacting flow fields, and the SPL increases linearly with logarithmic 1/2th power of the heat of combustion.

A study on the analysis of domestic gas explosion (실내가스폭발 해석에 관한 연구)

  • Kim Sang Sub;Cha Jae Ou
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.4 s.21
    • /
    • pp.24-29
    • /
    • 2003
  • Numerical analysis was conducted to predict the damage of indoor gas explosion for the propagation of explosion flame. Indoor gas diffusion distribution due to gas leakage was obtained by diffusion equation that adopted initial conditions from reference. Enthalpy of each gas-mixture ratio and reduced mechanism was applied to calculate flame temperature, and laminar combustion velocities with the variant of each gas concentration from reference were applied to the gas mixture. Turbulent combustion velocity was modeled by coupling of turbulent energy and laminar combustion velocity in k-$\epsilon$ model. For the analysis of flame propagation cartesian and cylindrical coordinate were used to indoor position and flame propagation respectively. The study analyzes the cause of pressure rising with the variation of flame propagation by glass damage, and the result shows that indoor pressure rising with ignition position varies window dimension.

  • PDF

A study on the stabilization characteristics of the diffusion flame formed behind a bluff body (Bluff Body 후류에 형성되는 확산화염의 보염특성에 관한 연구)

  • ;;An, Jin-Geun;Song, Kyu-Keun
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.12
    • /
    • pp.3344-3351
    • /
    • 1995
  • The stability of diffusion flame formed behind a bluff body with fuel injection slits was experimentally investigated in various fuel injection angles, fuel injection ratios, grids and extension ducts. The flame stability limits, temperature distributions and length of recirculation zones, direct photographs of flames were measured in order to discuss the stabilization mechanism of the diffusion flame. The results from this study are as follows. The fuel injection angle is an important factor in determining the flame stability. Stability limits can be improved by variety of the fuel injection ratio. When the grid and extension duct are set, stability characteristics are varied with the blockage ratios, grid intervals, and grid numbers. The recirculation zone not only serves as a steady ignition source of combustion stream but also governs the stabilization mechanism.

GO$_2$/Kerosene를 추진제로 하는 동축 인젝터의 화염 부상 특성에 관한 실험적 연구

  • Moon, Il-Yoon;Kim, Yoo;Park, Hee-Ho;Kim, Sun-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1999.04a
    • /
    • pp.4-4
    • /
    • 1999
  • 최근 충남대에서는 다양한 추진제와 연소 조건으로 액체로켓 연소 실험이 진행되고 있으며 그에 비례하여 많은 사고들이 발생하고 있다. 한 예로 GO$_2$/kerosene을 추진제로 하는 노즐삭마 시험용 로켓엔진(추력 1001bf, 연소실 압력 600psia) 개발 중에 화염이 인젝터면에 형성되어 인젝터면을 손상시키는 사고를 여러 번 경험하게 되었다. 본 연구는 인젝터 손상의 원인을 규명하여 안정적인 인젝터 설계에 도움을 주기 위한 목적으로 실험용 동축 인젝터를 제작하여 화염 부상 특성을 실험적으로 연구하였다. 사용된 인젝터는 연료인 Kerosene을 접선형 선회기로부터 90$^{\circ}$의 원뿔 각을 가지고 분무되도록 설계하였으며, 그 주위로 산하제인 GO$_2$가 연소실의 축방향에 수평하게 분무되도록 설계하였다. 2-유체 동축 인젝터의 난류 확산 화염에서 연료와 산화제의 혼합은 화염 특성을 결정하는 주요 변수이므로 인젝터로부터 분무되는 추진제간의 유량을 변화시켜 화염 부상 특성을 연구하였다.

  • PDF

A Study on chemiluminescence characteristics of a turbulent flame for different measurement location (난류 확산화염의 계측 위치에 따른 화염자발광 특성에 대한 연구)

  • Kwon, Minjun;Lee, Changyeop;Kim, Sewon
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.219-222
    • /
    • 2014
  • The flame chemiluminescence is a good tracer of flame statement. In this study, the characteristics of flame chemiluminescence($OH^*$, $CH^*$, ${C_2}^*$) according different measuring locations using photomultiplier(PMT), spectrometer and CCD camera. Measurements are made for $OH^*$, $CH^*$, ${C_2}^*$ radicals in gas & light oil diffusion flames. At turbulent nonpremixed combustion mode, the equivalence ratio is varied. The experimental results showed that measuring location affects the result of flame chemiluminescence.

  • PDF