• Title/Summary/Keyword: 난류화염전파

Search Result 37, Processing Time 0.02 seconds

Roles of displacement speed of premixed flame embedded in isotropic turbulent decaying flow (직접수치해법을 이용한 난류 예혼합 화염전파속도 연구)

  • Han, In-Suk;Huh, Kang-Yul
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.177-186
    • /
    • 2006
  • Flame surface area is a critical parameter determining turbulent flame speed. Three-dimensionaldirect numerical simulations (DNS) were conducted to figure out the evolution process of flame surface area. Fully compressible Navier-Stokes equations are solved to reproduce premixed flame embedded in isotropic decaying turbulent flow. The tangential straining and curvature of propagating surface affect development of flame area. In this study, four different turbulent intensity flows and three different Le number flames are investigated to force changes in straining and curvature effects. Consistent results are obtained for the probability density functions (PDF) of strain and curvature with previous researches. It is revealed that displacement speed, which is a speed of flame surface relative to unburnt flow, controls the balance between sink and source of flame surface area.

  • PDF

Roles of Displacement Speed of Premixed Flame Embedded in Isotropic Turbulent Decaying Flow (직접수치해법을 이용한 난류 예혼합 화염전파속도 연구)

  • Han, In-Suk;Huh, Kang-Yul
    • Journal of the Korean Society of Combustion
    • /
    • v.12 no.2
    • /
    • pp.10-19
    • /
    • 2007
  • Flame surface area is a critical parameter determining turbulent flame speed. Three-dimensional direct numerical simulations(DNS) were conducted to figure out the evolution process of flame surface area. Fully compressible Navier-Stokes equations are solved to reproduce premixed flame embedded in isotropic decaying turbulent flow. The tangential straining and curvature of propagating surface affect development of flame area. In this study, four different turbulent intensity flows and three different Le number flames are investigated to force changes in straining and curvature effects. Consistent results are obtained for the probability density functions (PDF) of strain and curvature with previous researches. It is revealed that displacement speed, which is a speed of flame surface relative to unburnt flow, controls the balance between sink and source of flame surface area.

  • PDF

Numerical analysis for Autoignition Characteristics of Turbulent Gaseous Jets in a High Pressure Environment (고압 분위기하에 분사된 메탄가스 제트의 자연점화 및 화염전파 특성 해석)

  • 김성구;유용욱;김용모
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.81-89
    • /
    • 2002
  • The autoignition and subsequent flame propagation of initially nonpremixed turbulent system have been numerically analyzed. The unsteady flamelet modeling based on the RIF (representative interactive flamelet) concept has been employed to account for the influences of turbulence on these essentially transient combustion processes. In this RIF approach, the partially premixed burning, diffusive combustion and formation of pollutants(NOx, soot) can be consistently modeled by utilizing the comprehensive chemical mechanism. To treat the spatially distributed inhomogeneity of scalar dissipation rate, the multiple RIFs are employed in the framework of EPFM(Eulerian particle flamelet model) approach. Computations are made for the various initial conditions of pressure, temperature, and fuel composition. The present turbulent combustion model reasonably well predicts the essential features of autoignition process in the transient gaseous fuel jets injected into high pressure and temperature environment.

Propagation Characteristics of Turbulent Premixed Flames in Nearly Isotropic Turbulent Flows (등방성 난류 유동장내 예혼합 화염의 자유 전파속도에 관한 실험적 연구)

  • Lee, S.J.;Noh, D.S.
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.35-41
    • /
    • 2003
  • Propagation speeds of turbulent premixed flames have been measured in a pulsed-flame flow reactor which generates flames propagating in nearly isotropic turbulent flow field with U'/$S_L$ ranging from 1.2 to 5.3. The measurement involved a high-speed digital imaging at 1000 frames/second to capture the flame propagation motion. In addition to the flame speed measurements, flame perimeter ratio was measured for comparison. The observed flame propagation speed is high ranging from 5 to 20 times the laminar flame speed for the range of U'/$S_L$. The flames observed at extreme equivalence ratios exhibit intermittent propagation in that only a small fraction of ignited flame kernel resulted in full propagation of the flame. Also, at low equivalence ratios the flame speed decreased substantially even at high turbulence intensities.

  • PDF

Recent trends in applied researches of CFD for a new engine design (전산 유체 해법의 엔진 설계 응용 연구의 최근 동향)

  • 허강열
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.17 no.5
    • /
    • pp.1-8
    • /
    • 1995
  • 전산유체 해법의 내연기관 3차원 해석에 대한 최근 연구 동향에 대해 소개하였다. 난류유동 해석은 아직 정확성과 신뢰도 면에서 많은 연구가 필요하지만 현재의 상태에서도 직관, 경험, 실험 측정에 의해 파악하기 어렵거나 많은 비용과 시간이 요구되는 부분을 보완해 줄 수 있는 도구로서 인정받고 있다. 연소해석 부분은 현상 자체가 유동, 연소, 분무, 열전달등이 복합적으로 작용하는 어려운 문제로서 공학계산의 가장 첨단 분야 중의 하나라 할 수 있다. 현재 관련 모델로서 스파크 점화기관의 점화 및 화염전파, 배기가스 생성 과정과 디젤기관의 압축착화, 예혼합 및 확산 연소, 매연 등의 생성과정에 대한 모델 개발과 검증이 활발히 이루어지고 있다. 일부 발표된 논문 결과들은 이와 같은 방법이 엔진의 주요 연소 특성을 재현하는데에 성공적으로 활용될 수 있음을 보여주고 있다.

  • PDF

Influence of Mixture Non-uniformity on Methane Explosion Characteristics in a Horizontal Duct (수평 배관의 메탄 폭발특성에 있어서 불균일성 혼합기의 영향)

  • Ou-Sup Han;Yi-Rac Choi;HyeongHk Kim;JinHo Lim
    • Korean Chemical Engineering Research
    • /
    • v.62 no.1
    • /
    • pp.27-35
    • /
    • 2024
  • Fuel gases such as methane and propane are used in explosion hazardous area of domestic plants and can form non-uniform mixtures with the influence of process conditions due to leakage. The fire-explosion risk assessment using literature data measured under uniform mixtures, damage prediction can be obtained the different results from actual explosion accidents by gas leaks. An explosion characteristics such as explosion pressure and flame velocity of non-uniform gas mixtures with concentration change similar to that of facility leak were examined. The experiments were conducted in a closed 0.82 m long stainless steel duct with observation recorded by color high speed camera and piezo pressure sensor. Also we proposed the quantification method of non-uniform mixtures from a regression analysis model on the change of concentration difference with time in explosion duct. For the non-uniform condition of this study, the area of flame surface enlarged with increasing the concentration non-uniform in the flame propagation of methane and was similar to the wrinkled flame structure existing in a turbulent flame. The time to peak pressure of methane decreased as the non-uniform increased and the explosion pressure increased with increasing the non-uniform. The ranges of KG (Deflagration index) of methane with the concentration non-uniform were 1.30 to 1.58 [MPa·m/s] and the increase rate of KG was 17.7% in methane with changing from uniform to non-uniform.

Validation of the Turbulent Burning Velocity Based on Asymptotic Zone Conditional Transport in Turbulent Premixed Combustion (영역조건평균에 기초한 난류예혼합 화염 전파 속도식 유도 및 검증)

  • Lee, Dong-Kyu;Huh, Kang-Y.
    • Journal of the Korean Society of Combustion
    • /
    • v.13 no.1
    • /
    • pp.23-30
    • /
    • 2008
  • An analytical expression for the turbulent burning velocity is derived from the asymptotic zone conditional transport equation at the leading edge. It is given as a sum of laminar and turbulent contributions, the latter of which is given as a product of turbulent diffusivity in unburned gas and inverse scale of wrinkling at the leading edge. It was previously shown that the inverse scale is equal to four times the maximum flame surface density in the wrinkled flamelet regime [1]. The linear behavior between $U_T$ and u' shows deviation with the inverse scale decreasing due to the effect of a finite flamelet thickness at higher turbulent intensities. DNS results show that $U_T/S^0_{Lu}$ may be given as a function of two dimensionless parameters, $u'/S^0_{Lu}$ and $l_t/\delta_F$, which may be transformed into another relationship in terms of $u'/S^0_{Lu}$, and Ka. A larger $l_t/{\delta}_F$ or a smaller Ka leads to a smaller scale of wrinkling, hence a larger turbulent burning velocity in the limited range of $u'/S^0_{Lu}$. Good agreement is achieved between the analytical expression and the turbulent burning velocities from DNS in both wrinkled and thickened-wrinkled flame regimes.

  • PDF