• Title/Summary/Keyword: 난류천이

Search Result 105, Processing Time 0.023 seconds

Mean Friction and Maximum Friction of Combined Flow (합성류의 평균마찰력과 최대마찰력)

  • 유동훈;정재희;박성준
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 2000.09a
    • /
    • pp.133-139
    • /
    • 2000
  • 일방향흐름의 해류나 천해파에 의한 파운동이나 해저면 가까이 경계층흐름은 주로 난류특성을 갖고 있으며, 난류특성은 완난류, 천이난류, 전난류 등 세 가지 증류로 대별된다. 그 중 완난류와 전난류로 대별하여 합성류 조건은 두 가지로 분류할 수 있다. 즉, 천해파와 해류가 합성될 때 해저면 가까이 난류특성 조건은 Table 1에 제시된 바와 같다. (중략)

  • PDF

A Comparative Study Of Airfoil Flow Considering Transition Phenomenon (천이현상을 고려한 익형유동의 공력특성 비교 연구)

  • Son, Mi-So;Ryu, Dong-Guk;Park, Su-Hyeong
    • Proceeding of EDISON Challenge
    • /
    • 2013.04a
    • /
    • pp.360-364
    • /
    • 2013
  • 본 연구에서는 아음속 저 레이놀즈 수에서 NACA0012에 나타난 층류 박리 거품과 천이유동에 대해 연구하였다. 천이유동조건과 완전난류유동 조건에 따른 EDISON 계산 결과 값과 실험값의 공력계수를 비교하였다. 또한, EDISON 계산 결과 값과 Xfoil을 이용하여 나온 결과 값의 천이점 비교를 통해 Xfoil의 천이 모델과 EDISON 천이 모델간의 차이를 비교하였다.

  • PDF

Effects of the Temporal Increase Rate of Reynolds Number on Turbulent Channel Flows (레이놀즈 수의 시간 증가율에 따른 난류 채널유동의 변화)

  • Jung, Seo Yoon;Kim, Kyoungyoun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.7
    • /
    • pp.435-440
    • /
    • 2016
  • Effects of the increase rate of Reynold number on near-wall turbulent structures are investigated by performing direct numerical simulations of transient turbulent channel flows. The simulations were started with the fully-developed turbulent channel flow at $Re_{\tau}=180$, then temporal accelerations were applied. During the acceleration, the Reynolds number, based on the channel width and the bulk mean velocity, increased almost linearly from 5600 to 13600. To elucidate the effects of flow acceleration rates on near-wall turbulence, a wide range of durations for acceleration were selected. Various turbulent statistics and instantaneous flow fields revealed that the rapid increase of flow rate invoked bypass-transition like phenomena in the transient flow. By contrast, the flow evolved progressively and the bypass transition did not clearly occur during mild flow acceleration. The present study suggests that the transition to the new turbulent regime in transient channel flow is mainly affected by the flow acceleration rate, not by the ratio of the final and initial Reynolds numbers.

CFD Analysis of Aerodynamic Characteristics of a BWB UCAV configuration with Transition effect (천이효과를 고려한 BWB UCAV 형상의 공력 특성 전산해석)

  • Jo, Young-Hee;Chang, Kyoungsik;Sheen, Dong-Jin;Park, Soo Hyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.7
    • /
    • pp.535-543
    • /
    • 2014
  • A computational simulation for a nonslender BWB UCAV configuration with rounded leading edge and span of 1.0m was performed to analyze its aerodynamic characteristics. The freestream is 50m/s over -4 to 26 degree A.o.A.s. Reynolds number based on the mean chord length is $1.25{\times}10^6$. 3D multi block hexahedral grids are used which allow good grid quality and ease to capture boundary layer. ${\gamma}-Re_{\theta}$ model as well as $k-{\omega}$ SST model is employed to assess the effect of transition for flow behavior. Drag and lift of the UCAV were well predicted while $C_M$ is under predicted at high angle of attacks and influenced by the turbulence models strongly. After assessing pressure distribution, skin friction lines and velocity field around the UCAV configuration, it was found that transition effect should be considered to enhance the prediction of aerodynamic behavior by a vortical flowfield.

An Experimental Study About The Intermittent Flow Field in The Transition Region of a Turbulent Round Jet (발달하는 원형제트의 간헐적 유동에 관한 실험적 연구)

  • 김숭기;조지룡;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.230-240
    • /
    • 1990
  • An exprimental research has been carried out to find the intermittent flow pattern in the transition region of a turbulent round jet in order to elucidate detailed turbulence structure and to accumulate basic data necessary for computational turbulence modelling. Turbulent signals were processed digitally to obtain conventional or conditional velocity components. The high-order conditional correlations obtained in this study showed similar trends as those of other free shear flows. It was found that the non-turbulent fluid contributes negligibly to the turbulent kinetic energy production and its diffusive transport and that the diffusion by bulk convection has the same order of magnitude as the gradient diffusion in the free boundary region. The statistical analyses such as flatness factor, skewness factor and probability density functions of turbulent and non-turbulent zone durations have also been performed.

Velocity profile measurement of supersonic boundary layer over a flat plate using the PIV technique (PIV 기법을 이용한 초음속 평판 경계층의 속도 분포 측정)

  • Lee, Hyuk;Kim, Young Ju;Byun, Yung Hwan;Park, Soo Hyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.6
    • /
    • pp.477-483
    • /
    • 2016
  • Velocity profiles of laminar, transition and turbulent boundary layers were investigated by using Particle Image Velocimetry(PIV) measurements on the flat plate at Mach 2.96. The Schlieren visualization and PIV measurements are also used to confirm whether the oblique shock wave generated from the leading edge affects the flow field over the flat plate. The laminar velocity profile measured from the experiment was well matched with the compressible Blasius solution. The velocity profile of the transition boundary layer was well correlated with the theoretical turbulent velocity profile from near the wall and the transition began from Re = $1.41{\times}106$. For the turbulent boundary layer, considering compressibility effects, the Van Driest-transformed velocity satisfies the incompressible log-law. It is found that the log region is extended farther in the wall-normal direction compared to the log region in incompressible boundary layer.

Numerical simulation study on transitional flow over the KARI-11-180 airfoil using γ-ReƟ transition model (γ-ReƟ 천이 모델을 사용한 KARI-11-180 익형의 천이 유동해석)

  • Sa, Jeong Hwan;Kim, Kiro;Cho, Kum Won;Park, Soo Hyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.3
    • /
    • pp.202-211
    • /
    • 2017
  • In this study, numerical simulations were performed using the ${\gamma}-Re_{\theta}$ transition model of KFLOW for the transitional flow over the KARI-11-180 airfoil. Numerical results of KFLOW were compared with experimental data and two other numerical results of XFoil and MSES. Fully turbulence model was predicted high skin friction drag than transition model because fully turbulence model could not solve the transitional flow. Numerical predictions using the ${\gamma}-Re_{\theta}$ model of KFLOW show a good agreement with experimental data and other numerical results. Present numerical results were confirmed the state of drag bucket due to dramatic changing of the transition location on the airfoil surface.

A Study on the Release Rate of Hazardous Materials from Liquid Pipeline (액체배관으로부터 위험물질 누출속도 산정에 관한 연구)

  • Tak Song-Su;Jo Young-Do
    • Journal of the Korean Institute of Gas
    • /
    • v.6 no.1 s.17
    • /
    • pp.81-85
    • /
    • 2002
  • This paper presents the calculation methods of liquid release rate in the transition region when hazardous materials leak from the pipeline due to an unwanted accident. For the laminar and turbulent flow region, liquid release rate from a pipeline can be calculated by using a commercial software or by using calculator based on the models(equations) suggested by Crowl and Louvar et al. However, there has been no corresponding model for the transition flow region. In this paper. we showed that the turbulent model may be used as an equation generally used in the transition region for conservative hazard analysis if safety factor $30\%$ is added to the value calculated by the turbulent model. In this regard, we first calculated the release rate from liquid pipeline in the transition region by using experimental data on Fanning friction factor depending on Reynolds number which Lap-Mou Tam et al. had introduced, then compared it with that of the laminar and turbulent models in transition region.

  • PDF

Direct Numerical Simulation of Low-Reynolds-Number Turbulent Flows in an Open-Channel: An Analysis of Turbulence Anisotropy (저 레이놀즈 수 개수로 난류흐름의 직접수치모의: 난류의 비등방성 해석)

  • Joung, Younghoon;Choi, Sung-Uk;Choi, Jung-Il
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.376-380
    • /
    • 2004
  • 측벽이 존재하는 개수로 난류흐름에 대한 DNS 자료를 이용하여 난류의 비등방성을 해석하였다. 측벽의 2등분선(sidewall bisector)에서 난류강도의 분포를 통해 바닥과 자유수면에서의 비등방성을 분석하고, AIM을 도입하여 흐름장 전반에 걸쳐 세부적인 비등방성 해석을 수행하였다. 측벽의 2등분선에서의 난류강도의 분포를 통해 바닥과 자유수면 근처에서 난류강도가 강한 비등방성을 갖는 것을 볼 수 있었다. 또한 3개의 다른 영역에서 AIM의 도입을 통해 측벽이나 바닥근처에서는 난류의 비등방성이 구형 관수로 흐름과 유사한 것으로 나타났으나, 개수로 난류흐름의 주된 특성이 velocity-dip phenomena가 존재하는 영역에서는 구형 관수로 흐름과는 달리 천이영역이 존재한다는 것을 알 수 있었다.

  • PDF

An Experimental Study on Turbulent Diffusion Flame in Double Coaxial Air Jets(II) (동축이중 공기분류중의 난류확산화염에 관한 실험적 연구 II)

  • 조용대;최병윤
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1234-1243
    • /
    • 1990
  • Double coaxial are jets(annular and coaxial air jets) between which propane gas is fed was selected to study the structure of diffusion flames in turbulent shear flow. Schlieren and direct photographs are taken to visualize the flame structure. Mean and fluctuating temperatures and ion currents were measured to investigate the macroscopic and the instantaneous flame structure. The objective of this study is to understand the interaction between combustion and mixing process especially in the transition region of turbulent shear flow. The investigation reported in this paper focuses on the macroscopic and the instantaneous structures of three flames obtained. The increased mixing effect resulting from increase of Reynolds number of central air jet makes the flame bluish and short. When the velocity of surrounding air stream is higher than that of central air jet, the instantaneous flame structure is composed of coherent structure. It is considered that the flame structure of transitional region of mixing layer depends on the structure of mixing layer of non-reacting conditions.