• Title/Summary/Keyword: 난류전단유동

Search Result 113, Processing Time 0.036 seconds

Investigation of the Three-dimensional Turbulent Flow Fields in Cone Type Gas Burner for Furnace - On the Turbulent Characteristics - (난방기용 콘형 가스버너에서 3차원 난류 유동장 고찰 - 난류특성치에 대하여 -)

  • Kim, J.K.;Jeong, K.J.;Kim, S.W.;Kim, I.K.
    • Journal of Power System Engineering
    • /
    • v.5 no.1
    • /
    • pp.21-26
    • /
    • 2001
  • This paper represents the turbulent intensity, the turbulent kinetic energy and Reynolds shear stress in the X-Y plane of cone type swirl gas burner measured by using X-probe from the hot-wire anemometer system. The experiment is carried out at flowrate 350 and $450{\ell}/min$ respectively in the test section of subsonic wind tunnel. The turbulent intensity and the turbulent kinetic energy show that the maximum value is formed in the narrow slits distributed radially on the edge of a cone type swirl burner, hence, the combustion reaction is anticipated to occur actively near this region. And the turbulent intensities ${\upsilon}\;and\;{\omega}$ are disappeared faster than the turbulent intensity u due to the inclined flow velocity ejecting from the swirl vanes of a cone type baffle plate of burner. Moreover, the Reynolds shear stress $u{\upsilon}$ is distributed about three times as large as the Reynolds shear stress $u{\omega}$ in the outer region of the cone type gas burner.

  • PDF

Characteristic Study on Effect of the Vent Mixer to Supersonic Fuel-Air Mixing with Stereoscopic-PIV Method (3차원 PIV 기법을 사용한 벤트혼합기가 초음속 연료-공기 혼합에 미치는 특성 연구)

  • Kim, Chae-Hyoung;Jeung, In-Seuck;Choi, Byung-Il;Kouchi, Toshinori;Masuya, Goro
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.378-385
    • /
    • 2012
  • Vent mixer can provide main flow directly into a recirculation region downstream of the mixer to enhance fuel-air mixing efficiency. Based on experimental results of three-dimensional velocity, vorticity and turbulent kinetic energy obtained by a stereoscopic PIV method, the performance of the vent mixer was compared with that of the step mixer which was used as a basic model. Thick shear layers of the vent mixer induced the increase of the penetration height. The turbulent kinetic energy mainly distributed along a boundary layer between the main flow and the jet plume. This turbulent field activates mass transfer in a mixing region, leading to the mixing enhancement.

  • PDF

Numerical Analysis of Turbulent Combustion of a Kerosene/Oxygen Coaxial Injector with a Recess (리세스가 있는 케로신/산소 동축 분사기의 난류 연소 유동 해석)

  • Choi, Jeong-Yeol;Shin, Jae-Ryul
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.77-78
    • /
    • 2011
  • A multi-step quasi-global mechanism is developed for the kerosene/oxygen combustion analysis including dissociation products. Reaction constants of the global reaction are determined to have agreement with experimental data. The mechanism is used for the numerical analysis of the combustion flow field of the kerosene/oxygen shear coaxial injector. The results from high-resolution numerical analysis confirmed qualitatively that the recess enhance the fuel/air mixing and combustion efficiency by the increased flow instabilities.

  • PDF

A Numerical Study on the Characteristics of High Resolution Wind Resource in Mountainous Areas Using Computational Fluid Dynamic Analysis (전산유동해석을 통한 산악 지역의 고해상도 풍력자원 특성에 관한 수치연구)

  • Lee, Soon-Hwan
    • Journal of the Korean earth science society
    • /
    • v.32 no.1
    • /
    • pp.46-56
    • /
    • 2011
  • The purpose of this paper is to evaluate the wind energy resources with high spatial resolution in Sunghak and Guduck mountains in Busan Metropolitan area under the various atmospheric stabilities. The numerical model used in this research is A2C (Atmosphere to CFD), mainly applied to assess the regional scale and microscale meteorological phenformin. Wind under the strong atmospheric stability moves around mountain side smoothly due to the strong potential energy. On the other hand, the cavity region on the lee side of mountain tends to be created and expanded as the atmospheric stability decrease. Annually the average distribution of wind power density, turbulence kinetic energy, and vertical wind shear help to explain quantitatively that wind resource near the northern side of Guduck mountain top is more suitable to establish wind energy complex than that in any other regions in the target area.

Dissipation and Control of Flow Instability in a Rectangular Swirl Combustor using Cooling Flow Injection (사각 스월 연소기에서 냉각 유동을 이용한 연소기 내 유동 불안정 감쇠 및 조종)

  • Yoo, Kwang-Hee;Kim, Jong-Chan;Sung, Hong-Gye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.236-241
    • /
    • 2009
  • To identify turbulent flow characteristics of non-reacting case resulted from cooling flow injection in a rectangular swirl combustor, 3D Large Eddy Simulation(LES) was implemented and Proper Orthogonal Decomposition(POD) analysis was used for post-processing. The combustor of concern is the LM6000, lean premixed dry low-NOx annular combustor, developed by GEAE. It was observed that increase in speed of shear layer resulted from the inflow of cooling flow caused intensified vorticity magnitude in central toroidal recirculation zone. In the case of vorticity magnitude in corner recirculation zone, however, was weakened. In addition, pressure fluctuation in combustor was damped down and longitudinal acoustic mode was significantly dissipated

  • PDF

An Experimental Study of Flow Characteristics Past vortical wall with Bottom Gap (수직벽 하부에 있는 틈새 후방의 유동특성에 관한 실험적 연구)

  • Cho Dae-Hwan;Lee Gyoung-Woo;Oh Kyoung-Gun
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2005.11a
    • /
    • pp.153-158
    • /
    • 2005
  • The turbulent shear flaw around a surface-mounted vertical wall was investigated using the two-frame PIV(CACTUS 3.1) system. From this study, it is revealed that at least 500 instantaneous velocity field data are required for ensemble average to get reliable turbulence statistics, but only 200 field data are sufficient for the time-averaged mean velocity information The flow has an unsteady recirculation region post vertical wall with bottom gap, followed by a slow relaxation to the fiat-plate boundary layer flow. The time-averaged reattachment length estimated from the streamline distribution is about x/H=3H. The large eddy structure in the separated shear layer seems to have signification influence on the development of the separated shear layer and the reattachment process.

  • PDF

Influence of Flame Holder on Film Cooling Effectiveness of Ramjet Combustor (화염안정기 형상이 램제트 연소실에서의 슬롯 막냉각 특성에 미치는 영향)

  • Lee, Keon-Woo;Song, J.;Cho, Hyung-Hee;Hwang, Ki-Young
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.315-320
    • /
    • 2008
  • This experimental study has been conducted to investigate the effect of the flame holder on the multi-slot film cooling in the ramjet combustor. The turbulent wake which is generated by the flame holder on the entrance of the coolant flow path affects on the slot. Adiabatic film cooling effectiveness on the downstream wall of the slot exit are measured. The results show that the film cooling performance is rapidly decreased after the slot exit by shear layer and high turbulence intensity between separated flows and coolant flows.

  • PDF

Three-Dimensional Numerical Analysis of Surface Buoyant Jets (표층밀도분류의 3차원 수치해석)

  • 허재영
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.3 no.3
    • /
    • pp.152-162
    • /
    • 1991
  • A three-dimensional numerical model with free water surface was established to investigate flow characteristics of surface buoyant jets and river plumes. Turbulent shear stresses and turbulent buoyancy fluxes were expressed in terms of the eddy viscosities and diffusivities. Stable stratification effects due to density difference between discharged water and receiving ambient water were taken into with empirical formulae. Through a comparison of numerical results with published experimental data the validity of the model was shown and the optimal stratification functions was determined The three-dimensional spreading characteristics were examined and the effects of inlet densimetric Froude number, inlet aspect ratio and water surface elevation on the flow development were discussed.

  • PDF

Influence of the Vertical Flame holder on Heat Transfer Characteristics of Ramjet Combustor (세로축 화염안정기 형상이 램제트 연소실에서의 열전달 특성에 미치는 영향)

  • Yang, Kang-Mo;Lee, Keon-Woo;Song, Ji-Woon;Cho, Hyung-Hee;Hwang, Ki-Young
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.305-309
    • /
    • 2008
  • This experimental study has been conducted to investigate the installation of the vertical flame holder shape in ramjet combustor, which affects on the film cooling effectiveness. All slot position, the film cooling effectiveness decreases because of the shear layer and high turbulence intensity between separated flows and coolant flows. When the flame holder is installed, film cooling effectiveness decreases abruptly on the beginning of the slot exit region due to the mixing effect. As the blowing rate increases, the film cooling effectiveness is increased for all cases due to the augmented momentum of injected coolant from the slot.

  • PDF

Turbulent Drag Reduction Using the Sliding-Belt Device (미끄러지는 벨트 장치를 이용한 난류 항력 감소)

  • Choi, Byunggui;Choi, Haecheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.11
    • /
    • pp.1481-1489
    • /
    • 1999
  • The sliding-belt concept introduced by Bechert et al. (AIAA J., Vol. 34, pp. 1072~1074) is numerically applied to a turbulent boundary layer flow for the skin-friction reduction. The sliding belt is moved by the shear force exerted on the exposed surface of the belt without other dynamic energy input. The boundary condition at the sliding belt is developed from the force balance. Direct numerical simulations are performed for a few cases of belt configuration. In the ideal case where the mechanical losses associated with the belt can be ignored, the belt velocity increases until the integration of the shear stress over the belt surface becomes zero, resulting in zero skin friction on the belt. From practical consideration of losses occurred In the belt device, a few different belt velocities are given to the sliding belt. It is found that the amount of drag reduction is proportional to the belt velocity.