• Title/Summary/Keyword: 나눗셈 알고리즘

Search Result 88, Processing Time 0.024 seconds

Branch-and-Bound Algorithm for Division of Perfect Nine Dart Combinations (퍼펙트 9 다트 조합의 나눗셈 분기한정 알고리즘)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.4
    • /
    • pp.87-94
    • /
    • 2022
  • This paper researched a study to find a combination of acquisition scores for 9 dart throws, which is the minimum number of dart tactile throws in 501 point dart games. The maximum score that can be obtained by throwing once in a dart game is 60 points, which can end the perfect dart game with 60 points eight times according to 60×8+21×1=501, and if you earn 21 points once, you can finish the game with 9 throws. This is called 9-dart finish. As such, only 18 and 14 studies on the combination of scores that can obtain 501 points with 9 throws are known, and no studies have been conducted applying the exhaustive search algorithm. This paper proposed a division branch-and-bound algorithm as a method of simplifying the O(2n) exponential time performance complexity of the typical branch-and-bound method of a exhaustive search method, to polynomial time complexity. The proposed method limited the level to 8, jumped to a quotient level of 501/60, and backtracked to explore only possible score combinations in the previous level. The possible score combinations of the nine perfect games found with the proposed algorithm were 90(101 cases).

An Improved Newton-Raphson's Reciprocal and Inverse Square Root Algorithm (개선된 뉴톤-랍손 역수 및 역제곱근 알고리즘)

  • Cho, Gyeong-Yeon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.1
    • /
    • pp.46-55
    • /
    • 2007
  • The Newton-Raphson's algorithm for finding a floating point reciprocal and inverse square root calculates the result by performing a fixed number of multiplications. In this paper, an improved Newton-Raphson's algorithm is proposed, that performs multiplications a variable number. Since the number of multiplications performed by the proposed algorithm is dependent on the input values, the average number of multiplications per an operation is derived from many reciprocal and inverse square tables with varying sizes. The superiority of this algorithm is proved by comparing this average number with the fixed number of multiplications of the conventional algorithm. Since the proposed algorithm only performs the multiplications until the error gets smaller than a given value, it can be used to improve the performance of a reciprocal and inverse square root unit. Also, it can be used to construct optimized approximate tables. The results of this paper can be applied to many areas that utilize floating point numbers, such as digital signal processing, computer graphics, multimedia, scientific computing, etc.

WCDMA Interference Cancellation Wireless Repeater Using Variable Stepsize Complex Sign-Sign LMS Algorithm (가변 스텝 Complex Sign-Sign LMS 적응 알고리즘을 사용한 WCDMA 간섭제거 중계기)

  • Hong, Seung-Mo;Kim, Chong-Hoon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.9
    • /
    • pp.37-43
    • /
    • 2010
  • An Interference Cancellation Wireless Repeater transmitts directly amplified the RF signal input to extend the coverage of the base station. Such a repeater inevitably suffers from the feedback interferences due to the environment and the adaptive Interference Cancelling System(ICS) is necessary. In this paper, the Variable Stepsize Complex Sign -Sign(VSCSS) LMS algorithm for ICS is presented. The algorithm can be implemented without multiplication/division arithmetic operation so that the required logic resources can be dramatically reduced in FPGA implementation. The performance of the proposed algorithm was analyzed in comparison with CSS-LMS algorithm and the learning curves obtained from simulation showed an excellent agreement with the theorical prediction. The simulation result with ICS in fading feedback channel environment showed the performance of the proposed algorithm is competible with NLMS algorithm.

Elliptic Curve Scalar Point Multiplication Using Radix-4 Modified Booth's Algorithm (Radix-4 Modified Booth's 알고리즘을 응용한 타원곡선 스칼라 곱셈)

  • 문상국
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.6
    • /
    • pp.1212-1217
    • /
    • 2004
  • The main back-bone operation in elliptic curve cryptosystems is scalar point multiplication. The most frequently used method implementing the scalar point multiplication, which is performed in the upper level of GF multiplication and GF division, has been the double-and-add algorithm, which is recently challenged by NAF(Non-Adjacent Format) algorithm. In this paper, we propose a more efficient and novel scalar multiplication method than existing double-and-add by applying redundant receding which originates from radix-4 Booth's algorithm. After deriving the novel quad-and-add algorithm, we created a new operation, named point quadruple, and verified with real application calculation to utilize it. Derived numerical expressions were verified using both C programs and HDL (Hardware Description Language) in real applications. Proposed method of elliptic curve scalar point multiplication can be utilized in many elliptic curve security applications for handling efficient and fast calculations.

Analysis on the Problem-Solving Methods of Students on Contextual and Noncontextual problems of Fractional Computation and Comparing Quantities (분수의 연산과 크기 비교에서 맥락 문제와 비맥락 문제에 대한 학생들의 문제해결 방법 분석)

  • Beom, A Young;Lee, Dae Hyun
    • Education of Primary School Mathematics
    • /
    • v.15 no.3
    • /
    • pp.219-233
    • /
    • 2012
  • Practicality and value of mathematics can be verified when different problems that we face in life are resolved through mathematical knowledge. This study intends to identify whether the fraction teaching is being taught and learned at current elementary schools for students to recognize practicality and value of mathematical knowledge and to have the ability to apply the concept when solving problems in the real world. Accordingly, contextual problems and noncontextual problems are proposed around fractional arithmetic area, and compared and analyze the achievement level and problem solving processes of them. Analysis showed that there was significant difference in achievement level and solving process between contextual problems and noncontextual problems. To instruct more meaningful learning for student, contextual problems including historical context or practical situation should be presented for students to experience mathematics of creating mathematical knowledge on their own.

Pre-service teachers' eliciting student thinking about a long division algorithm: Approximation of teaching via digital simulation (나눗셈 알고리즘에 대한 학생 사고를 예비교사가 도출하기 : 디지털 시뮬레이션을 통해 가르치는 것에 근접하기)

  • Kwon, Minsung;Pang, JeongSuk
    • The Mathematical Education
    • /
    • v.59 no.3
    • /
    • pp.271-294
    • /
    • 2020
  • The purpose of this study was to explore the possibility of digital simulation by which pre-service teachers (PSTs) can approximate the core teaching practice of eliciting student thinking. This study examined PSTs' questions to elicit student thinking, their use of "pause" session and peer feedback, and their reflections on doing a digital simulation. We analyzed a two-hour digital simulation session with 13 PSTs who enrolled in the elementary mathematics methods course. The results showed that PSTs shifted their general questions to more content-specific questions throughout the simulation and made a quick transition to comparing students' strategies. The number of lead PST-initiated "pause" ranged one to four times for various reasons. Their peer-coaches did not voluntarily "pause" the simulation session but actively shared what they noticed from the student work samples and suggested the next teaching moves. Without utilizing the pause session, the dramatic improvement of questioning was not observed. Even though the PSTs felt overwhelmed with interacting with the student-avatars in real-time, they highlighted the benefits of simulations, appreciated the opportunity to learn the core teaching practice, and viewed this digital simulation as "real" and "authentic" experience. The findings of this study provide implications for re-designing a practice-based teacher education program.

The Study on Transition of Mathematics Textbooks in North Korea -Focused on the contents of Fraction- (북한 수학 교과서 내용 변화에 대한 분석 - 분수 지도 내용 중심으로 -)

  • Park Moon-Hwan
    • School Mathematics
    • /
    • v.8 no.2
    • /
    • pp.139-160
    • /
    • 2006
  • It seems that North Korea has been trying to reorganize its educational system as well as its economic system on a large scale since July 1, 2002. There has been a decrease in quantity of math textbooks by about 30% decrease. Until the 1990's, geometry and algebra had been kept apart from each other in North Korea, but they are put together now. Moreover many changes have been made in both contents and methods of teaching. For example, an area model is used in North Korea to teach operation of fraction, which makes the learning period shorter. This idea will provide us with many implication when we need to ready for decreasing the quantities in the future. Moreover teaching methods of division algorithms need to be reconsidered since the visual algorithm of division could help save the thinking in problem solving.

  • PDF

A VLSI Design of Entropy Coding Algorithm for JPEG2000 CODEC (JPEG2000 CODEC을 위한 Entropy 코딩 알고리즘의 VLSI 설계)

  • Lee, Kyoung-Min;Oh, Kyoung-Ho;Jung, Il-Hwan;Kim, Young-Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.1C
    • /
    • pp.35-44
    • /
    • 2004
  • In this paper, we design an efficient VLSI architecture of entropy coding algorithm in JPEG2000. Entropy coder is a context-based binary arithmetic encoder, and composed of a Context Extractor(CE) and an Arithmetic Coder(AC). We speed-up CE by skipping no-operation bits in coding passes, and AC is to be performed based on MQ coder. Because of using Qe value associated with each allowed context and probability estimation, MQ coder is a multiplication free coder that reduces computation loads and makes simple the structure of arithmetic coder. We have developed and synthesized the VHDL models of CE and AC pairs using Xilinx FPGA technology. The proposed architecture operates up to 30MHz.

A Study on High Performances Floating Point Unit (고성능 부동 소수점 연산기에 대한 연구)

  • Park, Woo-Chan;Han, Tack-Don
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.11
    • /
    • pp.2861-2873
    • /
    • 1997
  • An FPU(Floating Point unit) is the principle component in high performance computer and is placed on a chip together with main processing unit recently. As a Processing speed of the FPU is accelerated, the rounding stage, which occupies one of the floating point Processing steps for floating point operations, has a considerable effect on overall floating point operations. In this paper, by studying and analyzing the processing flows of the conventional floating point adder/subtractor, multipler and divider, which are main component of the FPU, efficient rounding mechanisms are presented. Proposed mechanisms do not require any additional execution time and any high speed adder for rounding operation. Thus, performance improvement and cost-effective design can be achieved by this approach.

  • PDF

Design of a Elliptic Curve Crypto-Processor for Hand-Held Devices (휴대 단말기용 타원곡선 암호 프로세서의 설계)

  • Lee, Wan-Bok;Kim, Jung-Tae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.4
    • /
    • pp.728-736
    • /
    • 2007
  • The more improved the Internet and the information technology, the stronger cryptographic system is required which can satisfy the information security on the platform of personal hand-held devices or smart card system. This paper introduces a case study of designing an elliptic curve cryptographic processor of a high performance that can be suitably used in a wireless communicating device or in an embedded system. To design an efficient cryptographic system, we first analyzed the operation hierarchy of the elliptic curve cryptographic system and then implemented the system by adopting a serial cell multiplier and modified Euclid divider. Simulation result shows that the system was correctly designed and it can compute thousands of operations per a secdond.