This paper presents a high-speed bit-parallel systolic divider for computing modular division A($\chi$)/B($\chi$) mod G($\chi$) in finite fields GF$(2^m)$. The presented divider is based on the binary GCD algorithm and verified through FPGA implementation. The proposed architecture produces division results at a rate of one every 1 clock cycles after an initial delay of 5m-2. Analysis shows that the proposed divider provides a significant reduction in both chip area and computational delay time compared to previously proposed systolic dividers with the same I/O format. In addition, since the proposed architecture does not restrict the choice of irreducible polynomials and has regularity and modularity, it provides a high flexibility and Scalability with respect to the field size m. Therefore, the proposed divider is well suited to VLSI implementation.
Journal of the Korea Institute of Information and Communication Engineering
/
v.19
no.10
/
pp.2341-2349
/
2015
The commonly used Goldschmidt's floating-point divider algorithm performs two multiplications in one iteration. In this paper, a tentative error corrected K'th Goldschmidt's floating-point number divider algorithm which performs K times multiplications in one iteration is proposed. Since the number of multiplications performed by the proposed algorithm is dependent on the input values, the average number of multiplications per an operation in single precision and double precision divider is derived from many reciprocal tables with varying sizes. In addition, an error correction algorithm, which consists of one multiplication and a decision, to get exact result in divider is proposed. Since the proposed algorithm only performs the multiplications until the error gets smaller than a given value, it can be used to improve the performance of a divider unit. Also, it can be used to construct optimized approximate reciprocal tables.
Journal of the Korea Institute of Information and Communication Engineering
/
v.9
no.2
/
pp.380-389
/
2005
The Goldschmidt iterative algorithm for a floating point divide calculates it by performing a fixed number of multiplications. In this paper, a variable latency Goldschmidt's divide algorithm is proposed, that performs multiplications a variable number of times until the error becomes smaller than a given value. To calculate a floating point divide '$\frac{N}{F}$', multifly '$T=\frac{1}{F}+e_t$' to the denominator and the nominator, then it becomes ’$\frac{TN}{TF}=\frac{N_0}{F_0}$'. And the algorithm repeats the following operations: ’$R_i=(2-e_r-F_i),\;N_{i+1}=N_i{\ast}R_i,\;F_{i+1}=F_i{\ast}R_i$, i$\in${0,1,...n-1}'. The bits to the right of p fractional bits in intermediate multiplication results are truncated, and this truncation error is less than ‘$e_r=2^{-p}$'. The value of p is 29 for the single precision floating point, and 59 for the double precision floating point. Let ’$F_i=1+e_i$', there is $F_{i+1}=1-e_{i+1},\;e_{i+1}',\;where\;e_{i+1}, If '$[F_i-1]<2^{\frac{-p+3}{2}}$ is true, ’$e_{i+1}<16e_r$' is less than the smallest number which is representable by floating point number. So, ‘$N_{i+1}$ is approximate to ‘$\frac{N}{F}$'. Since the number of multiplications performed by the proposed algorithm is dependent on the input values, the average number of multiplications per an operation is derived from many reciprocal tables ($T=\frac{1}{F}+e_t$) with varying sizes. 1'he superiority of this algorithm is proved by comparing this average number with the fixed number of multiplications of the conventional algorithm. Since the proposed algorithm only performs the multiplications until the error gets smaller than a given value, it can be used to improve the performance of a divider. Also, it can be used to construct optimized approximate reciprocal tables. The results of this paper can be applied to many areas that utilize floating point numbers, such as digital signal processing, computer graphics, multimedia, scientific computing, etc
The Journal of Korean Institute of Communications and Information Sciences
/
v.28
no.7A
/
pp.547-556
/
2003
This paper proposes a novel arithmetic unit over GF(2$^{m}$ ) for low-area elliptic curve cryptographic processor. The proposed arithmetic unit, which is linear feed back shift register (LFSR) architecture, is designed by using hardware sharing between the binary GCD algorithm and the most significant bit (MSB)-first multiplication scheme, and it can perform both division and multiplication in GF(2$^{m}$ ). In other word, the proposed architecture produce division results at a rate of one per 2m-1 clock cycles in division mode and multiplication results at a rate of one per m clock cycles in multiplication mode. Analysis shows that the computational delay time of the proposed architecture, for division, is less than previously proposed dividers with reduced transistor counts. In addition, since the proposed arithmetic unit does not restrict the choice of irreducible polynomials and has regularity and modularity, it provides a high flexibility and scalability with respect to the field size m. Therefore, the proposed novel architecture can be used for both division and multiplication circuit of elliptic curve cryptographic processor. Specially, it is well suited to low-area applications such as smart cards and hand held devices.
In this paper, we propose a new technique which allows to store the pre-scaling constants directly in a table thus eliminating the cycle for computing pre-scaling constants. Especially we analyzed the range of pre-scalingconstants and rearranged them in a carry-save form using two look-up tables so that the size of the tables can be reduced significantly. The resulting scheme is compared with the previously developed method and shown to be effective with respect to area and time to implement the high-radix divider.
The Journal of Korean Institute of Communications and Information Sciences
/
v.27
no.12C
/
pp.1288-1298
/
2002
To implement elliptic curve cryptosystem in GF(2$\^$m/) at high speed, a fast divider is required. Although bit-parallel architecture is well suited for high speed division operations, elliptic curve cryptosystem requires large m(at least 163) to support a sufficient security. In other words, since the bit-parallel architecture has an area complexity of 0(m$\^$m/), it is not suited for this application. In this paper, we propose a new serial-in serial-out systolic array for computing division operations in GF(2$\^$m/) using the standard basis representation. Based on a modified version of tile binary extended greatest common divisor algorithm, we obtain a new data dependence graph and design an efficient bit-serial systolic divider. The proposed divider has 0(m) time complexity and 0(m) area complexity. If input data come in continuously, the proposed divider can produce division results at a rate of one per m clock cycles, after an initial delay of 5m-2 cycles. Analysis shows that the proposed divider provides a significant reduction in both chip area and computational delay time compared to previously proposed systolic dividers with the same I/O format. Since the proposed divider can perform division operations at high speed with the reduced chip area, it is well suited for division circuit of elliptic curve cryptosystem. Furthermore, since the proposed architecture does not restrict the choice of irreducible polynomial, and has a unidirectional data flow and regularity, it provides a high flexibility and scalability with respect to the field size m.
In this paper, we first propose a fast division algorithm in GF($2^{163}$) using standard basis representation, and then it is mapped into divider for GF($2^{163}$) with iterative hardware structure. The proposed algorithm is based on the binary ExtendedGCD algorithm, and the arithmetic operations for modular reduction are performed within only one "while-statement" unlike conventional approach which uses two "while-statement". In this paper, we use reduction polynomial $f(x)=x^{163}+x^7+x^6+x^3+1$ that is recommended in SEC2(Standards for Efficient Cryptography) using standard basis representation, where degree m = 163. We also have implemented the proposed iterative architecture in FPGA using Verilog HDL, and it operates at a clock frequency of 85 MHz on Xilinx-VirtexII XC2V8000 FPGA device. From implementation results, we will show that computation speed of the proposed scheme is significantly improved than the existing two approaches.
The Transactions of the Korea Information Processing Society
/
v.7
no.1
/
pp.252-265
/
2000
In this thesis, the analysis of data processing method and the amount of computation in the whole geometry processing is conducted step by step. Floating-point ALU design is based on the characteristics of geometry processing operation. The performance of the devised ALU fitting with the geometry processing operation is analyzed by simulation after the description of the proposed ALU and geometry processor. The ALU designed in the paper can perform three types of floating-point operation simultaneously-addition/subtraction, multiplication, division. As a result, the 23.5% of improvement is achieved by that floating-point ALU for the whole geometry processing and in the floating-point division and square root operation, there is another 23% of performance gain with adding area-performance efficient SRT divisor.
Journal of the Institute of Electronics Engineers of Korea TC
/
v.44
no.2
/
pp.62-68
/
2007
This paper proposes an efficient integer division algorithm for high speed FPGAs' which support built-in RAMs' and multipliers. The integer division algorithm is iterative with RAM-based LUT and multipliers, which minimizes the usage of logic fabric and connection resources. Compared with some popular division algorithms such as division by subtraction or division by multiply-subtraction, the number of iteration is much smaller, so that very low latency can be achieved with pipelined implementations. We have implemented our algorithm in the Xilinx virtex-4 FPGA with VHDL coding and have achieved 300MSPS data rate in 17bit integer division. The algorithm used less than 1/6 of logic slices, 1/4 of the built-in multiply-accumulation units, and 1/3 of the latencies compared with other popular algorithms.
Journal of the Korea Institute of Information and Communication Engineering
/
v.14
no.3
/
pp.637-647
/
2010
This paper suggested an algorithm that uses a multiplier, 'w bit $\times$ w bit = 2w bit', to process $\frac{N}{D}$ integer division of 2w bit integer N and w bit integer D. An algorithm suggested of the research, when the divisor D is '$D=0.d{\times}2^L$, 0.5 < 0.d < 1.0', approximate value of $\frac{1}{D}$, '$1.g{\times}2^{-L}$', which satisfies '$0.d{\times}1.g=1+e$, e < $2^{-w}$', is defined as over reciprocal number and the dividend N is segmented in small word more than 'w-3' bit, and partial quotient is calculated by multiplying over reciprocal number in each segmented word, and quotient of double precision integer division is evaluated with sum of partial quotient. The algorithm suggested in this paper doesn't require additional correction, because it can calculate correct reciprocal number. In addition, this algorithm uses only multiplier, so additional hardware for division is not required to implement microprocessor. Also, it shows faster speed than the conventional SRT algorithm. In conclusion, results from this study could be used widely for implementation SOC(System on Chip) and etc. which has been restricted to microprocessor and size of the hardware.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.