• Title/Summary/Keyword: 나노 물질

Search Result 1,199, Processing Time 0.032 seconds

Current Status and Prospect of Nanopowder Technology (나노분말 기술의 현황 및 전망)

  • Park Jong-Ku
    • Proceedings of the Korea Environmental Mutagen Society Conference
    • /
    • 2005.05a
    • /
    • pp.27-39
    • /
    • 2005
  • 나노기술은 21세기 초반 첨단산업을 이끌어갈 핵심기술 중의 하나로 여러 나라들이 국가적인 차원에서 전략적으로 개발하고 있다 나노기술은 초정밀 가공기술, 원자 혹은 분자 단위의 조립(조합)기술, 소재공정기술 등의 기술 분야를 포함하며 나노스케일 영역에서 나노소재를 이용(제조 및 가공)하여 새로운 응용분야를 창출해 내거나 기존 산업을 더욱 고도화하는데 기여하는 기술이다. 나노소재는 금속, 세라믹, 고분자, 생체물질 등의 특정 물질 영역에 국한되지 않고 다양한 형태, 다양한 물성을 갖고 있으며 나노기술 구현에 있어서 직접적인 대상 혹은 중간매체에 해당한다. 따라서 나노소재 기술은 대단히 광범위한 영역을 포함하는 나노기술의 바탕을 이루는 기반기술 또는 원천기술이라고 할 수 있다. 여러 형태의 나노소재 중에서 가장 저차원(0차원)의 물질에 해당하는 나노분말은 기술적으로 가장 실용화에 근접해 있으며 이미 많은 상용화 사례들이 나타나고 있다. 나노분말 기술은 기술 성숙도 측면에서뿐만 아니라 확장성(유용성), 신규성(혁신성) 측면에서 대단한 가능성을 갖고 있기 때문에 향후 대단히 빠른 속도로 시장이 확대될 전망이다. 본 발표에서는 나노분말 기술의 개발 현황 및 전망에 대하여 언급하고자 한다.

  • PDF

Current Status and Prospect of Nanopowder Technology (나노분말 기술의 현황 및 전망)

  • Park, Jong-Ku
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2005.05a
    • /
    • pp.27-39
    • /
    • 2005
  • 나노기술은 21세기 초반 첨단산업을 이끌어갈 핵심기술 중의 하나로 여러 나라들이 국가적인차원에서 전략적으로 개발하고 있다. 나노기술은 초정밀 가공기술, 원자 혹은 분자 단위의 조립(조합)기술, 소재공정기술 등의 기술 분야를 포함하며 나노스케일 영역에서 나노소재를 이용(제조 및 가공)하여 새로운 응용분야를 창출해내 거나 기존 산업을 더욱 고도화하는데 기여하는 기술이다. 나노소재는 금속, 세라믹, 고분자, 생체물질 등의 특정 물질 영역에 국한되지 않고 다양한 형태, 다양한 물성을 갖고 있으며 나노기술 구현에 있어서 직접적인 대상 혹은 중간매체에 해당한다. 따라서 나노소재기술은 대단히 광범위한 영역을 포함하는 나노기술의 바탕을 이루는 기반기술 또는 원천기술이라고 할 수 있다. 여러 형태의 나노소재 중에서 가장 저차원(0차원)의 물질에 해당하는 나노분말은 기술적으로 가장 실용화에 근접해 있으며 이미 많은 상용화 사례들이 나타나고 있다. 나노분말 기술은 기술 성숙도 측면에서 뿐만 아니라 확장성(유용성), 신규성(혁신성) 측면에서 대단한 가능성을 갖고 있기 때문에 향후 대단히 빠른 속도로 시장이 확대될 전망이다. 본 발표에서는 나노분말 기술의 개발 현황 및 전망에 대하여 언급하고자 한다.

  • PDF

Nano-safety Management and Exposure Assessment of Nanomaterials Producing Facilities (나노물질 생산시설의 환경노출 평가와 안전관리)

  • Umh, Ha Nee;Roh, Jinkyu;Park, Junsu;Kwak, Byoung Kyu;Lee, Byung Cheon;Choi, Kyunghee;Yi, Jongheop;Kim, Younghun
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.112-117
    • /
    • 2012
  • With the development of nanotechnology, nano-consumer products have been popularized. For the past 10 years, potential risk of nanomaterials to human and environment have been raised carefully. Especially, workers, who directly handle nanomaterials in laboratories and manfacturers, will lead to direct exposure of nanomaterials. Therefore, direct exposure assessment and field monitoring of nanomaterials are required to assess and manage the nanomaterial exposure to human and environment. In this work, two nano-manufacturing companies, which had plasma and sol-gel processes, were selected to analyze the main exposure source and process with in-situ SMPS (scanning mobility particle sizer) and ex-situ TEM (transmission electron microscopy). The results showed that the colloidal nanoparticle in liquid phase was easily evaporated and monitored by SMPS. Most serious thing is that the workers does not know about the potential risk of nanomaterials, and thus they are not taking proper protection activities, such as PPE (personal protective equipment). Therefore, exposure assessment for nanomaterial handling facilities should be additionally carried out, and nano-safety management protocols are also provided.

촉매를 이용하지 않은 GaAs 나노막대 성장

  • Lee, Eun-Hye;Song, Jin-Dong;Kim, Su-Yeon;Han, Il-Gi;Jang, Su-Gyeong;Lee, Jeong-Il
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.224-224
    • /
    • 2010
  • 최근 반도체 나노막대의 구조적, 광학적 특성을 이용한 새로운 개념의 광학 및 전자 소자 개발을 위한 연구가 활발히 진행되고 있다. 기존의 반도체 나노막대는 gold를 촉매로 하여 성장한 것이 대부분이었지만, gold 촉매는 다른 물질에 빠르게 확산되기 때문에 반도체 특성에 좋지 않은 영향을 미친다. 이러한 이유로 aluminum이나 titanium과 같은 물질을 gold 촉매 대신 사용하거나 촉매를 사용하지 않는 성장 방법에 관한 이슈들이 주목받고 있다. 본 연구에서는 금속 촉매 물질을 사용하지 않고 반도체 나노막대 성장을 시도하였다. 금속 촉매 없이 반도체 나노막대를 성장하는 것은 반도체 특성에 악영향을 미치지 않을 뿐더러, 공정 과정이 용이하다는 장점 때문에 최근 많이 시도되고 있다. 본 실험에서는 Molecular Beam Epitaxy (MBE) 방법을 이용하여 (100) GaAs 기판 위에 GaAs 나노막대를 성장하였다. 금속 촉매 없이 반도체 나노막대를 성장하기 위해 에칭된 $SiO_2$ 층을 이용하였다. GaAs 기판 위에 형성된 35nm 두께의 $SiO_2$를 20:1 BOE 용액에서 10초 간 에칭하면 $SiO_2$상에 pinhole을 형성하는데 이것이 gallium과 반응하면 나노막대 성장을 유도하는 seed가 만들어져 촉매를 사용하지 않고도 나노막대 성장이 가능하다. GaAs 나노막대 성장을 위해 BOE 에칭 조건, gallium incubation time 유무, GaAs 나노막대 성장온도, galiium과 arsenic의 성분 비율, GaAs 양 등을 변화시켜 실험하였고 이렇게 성장된 나노막대가 SEM image 상에서 관찰되었다.

  • PDF

AFM을 이용한 나노급 $Ge_2Sb_2Te_5$의 전기적 특성

  • Bae, Byeong-Ju;Hong, Seong-Hun;Jo, Jung-Yeon;O, Sang-Cheol;Hwang, Jae-Yeon;Lee, Heon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.21.1-21.1
    • /
    • 2009
  • 상변화 메모리는 비휘발성 메모리이면서 빠른 동작 속도, 낮은 동작 전압 등 다양한 장점을 지니고 있어 차세대 메모리로 주목 받고 있다. 최근 상변화 메모리의 동작 전류를 감소시키기 위해 상변화 물질 및 전극 물질에 대한 연구를 진행하고 있으며, 소자의 크기를 최소화 하기 위한 연구가 진행되고 있다. 본 연구에서는 나노 임프린트 리소그래피와 전도성 AFM을 이용하여 나노급 상변화 물질의 특성을 평가하였다. 나노급 상변화 물질을 형성하기 위해 열경화성 나노 임프린트 리소그래피를 이용하여 $Ge_2Sb_2Te_5$(GST)/Mo/SiO2 기판 위에 200nm급 홀 패턴을 형성하였다. 홀 패턴에 Cr을 증착하여 리프트 오프 한 뒤 Cr을 하드 마스크로 사용하여 GST를 식각하였다. 그 결과, Mo 하부 전극 위에200nm 지름과 100nm 높이를 가지는 GST 나노 기둥을 형성하였다. GST 나노 기둥의 전기적 특성 평가를 위해 저항 측정 장비 및 펄스 발생기와AFM을 사용하였다. AFM은 접촉 모드로 설정하였으며, Pt가 코팅된 AFM tip을 사용하여 Cr 하드 마스크와 함께 상부 전극으로 사용하였다. GST 나노 기둥을 초기화 시키기 위해 I-V sweep을 하였으며, 그 결과 $1M\Omega$에서 $10\;k\Omega$으로 저항이 변화함을 확인하였다. GST 나노 기둥은 2V, 5ns의 리셋 펄스에서 비정질로 변화하였으며, 1.3V, 150ns의 셋 펄스에서 결정질로 변화하였다. 이 동작 전압으로 5번의 스위칭 특성을 평가하였으며, 이 결과는 소자 형태의 200nm 급GST의 특성과 유사하여 나노급 상변화 물질을 테스트하는 새로운 방법으로 사용될 수 있을 것이다.

  • PDF

다양한 구조체 내에서의 고분자 구조분석

  • Lee, Jeong-Min;Kim, Won-Tae;Jang, Rak-U
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.61-69
    • /
    • 2015
  • 나노과학에 대한 다양한 실험적 연구와 이론적 연구가 활발해지고 전문화 되어감에 따라 나노물질에 대해 연구하는 것은 더욱 중요해지고 있는 추세이다. 현재 고분자 나노물질들은 코팅, 광전자 부품, 자기 매체, 세라믹 등에 활발하게 이용되고 있으며 그 활용 범위가 더 커질 것으로 전망된다. 지난 몇 년간 사각기둥 형태의 구조체 내부에서 존재하는 고분자의 움직임에 대한 연구는 다양하게 진행되어왔다. 그러나 고분자들을 더욱 유용하게 응용하여 이용하기 위해서는 나노입자 기술과 연결시켜 보다 다양한 환경에서의 고분자의 상태를 자세하게 이해해야 할 필요가 있다. 고분자 물질에 대한 이론적 연구는 주로 계산이 용이한 거시적인 모델인 코스그레인(Coarse-grained) 모델을 이용한 컴퓨터 시뮬레이션을 통해 이루어져왔다. 본 연구에서도 에디슨 서버에 탑재된 코스그레인 모델을 이용한 분자 모델링 시뮬레이션을 통해 제한된 공간 안에서 다양한 구조체들의 내부에서 고분자의 구조를 계산하고, 시뮬레이션의 결과값과 Flory의 공식을 이용한 이론적인 계산값이 얼마나 잘 맞아 떨어지는지에 대해 알아보고자 한다.

  • PDF

Performance Enhancement of Ion-Exchange Membranes Using Nanomaterials (나노물질을 이용한 이온교환막의 성능 향상)

  • Moon-Sung Kang
    • Membrane Journal
    • /
    • v.33 no.6
    • /
    • pp.315-324
    • /
    • 2023
  • Ion-exchange membrane (IEM), is a key component that determines the performance of the electro-membrane processes. In this review, the latest research trends in improving the performance of IEMs used in various electro-membrane processes through modification using carbon-based and metal-based nanomaterials are investigated. The nanomaterials can be introduced into IEMs through various methods. In particular, carbon-based nanomaterials can strengthen their interaction with polymer chains by introducing additional functional groups through chemical modification. Through this, not only can the ion conductivity of IEM be improved, but also the permselectivity can be improved through the sieving effect through the layered structure. Meanwhile, metal-based nanomaterials can improve permselectivity through sieving properties using the difference in hydration radius between target ions and excluded ions within a membrane by using the property of having a layered or porous structure. In addition, depending on the characteristics of the binder used, ion conductivity can be improved through interaction between nanomaterials and binders. From this review, it can be seen that the properties of IEMs can be effectively controlled using carbon-based and metal-based nanomaterials and that research on this is important to greatly improve the performance of the electro-membrane process.

Electrochemical Mass Transport Control in Biomimetic Solid-State Nanopores (생체모사형 나노포어를 활용한 전기화학 기반 물질전달 조절 시스템)

  • Soongyu Han;Yerin Bang;Joon-Hwa Lee;Seung-Ryong Kwon
    • Journal of the Korean Electrochemical Society
    • /
    • v.26 no.4
    • /
    • pp.43-55
    • /
    • 2023
  • Mass transport through nanoporous structures such as nanopores or nanochannels has fundamental electrochemical implications and many potential applications as well. These structures can be particularly useful for water treatment, energy conversion, biosensing, and controlled delivery of substances. Earlier research focused on creating nanopores with diameters ranging from tens to hundreds of nanometers that can selectively transport cationic or anionic charged species. However, recent studies have shown that nanopores with diameters of a few nanometers or even less can achieve more complex and versatile transport control. For example, nanopores that mimic biological channels can be functionalized with specific receptors to detect viruses, small molecules, and even ions, or can be made hydrophobic and responsive to external stimuli, such as light and electric field, to act as efficient valves. This review summarizes the latest developments in nanopore-based systems that can control mass transport based on the size of the nanopores (e.g., length, diameter, and shape) and the physical/chemical properties of their inner surfaces. It also provides some examples of practical applications of these systems.