• Title/Summary/Keyword: 나노형광체

Search Result 67, Processing Time 0.022 seconds

Fabrication of $Gd_2O_3:Eu^{3+}$ Nano Phosphor and Optical Characteristics for High Resolution Radiation Imaging (고해상도 방사선 영상을 위한 $Gd_2O_3:Eu^{3+}$ 나노 형광체 제조 및 광학적 특성)

  • Kim, So-Yeong;Kang, Sang-Sik;Park, Ji-Koon;Cha, Byung-Youl;Choe, Chi-Won;Lee, Hyung-Won;Nam, Sang-Hee
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.1
    • /
    • pp.148-152
    • /
    • 2007
  • In this paper, we have synthesized $Gd_2O_3:Eu^{3+}$ nano phosphor particle using a low temperature solution-combustion method. We have investigated the structure and the luminescent characteristic as the sintering temperature and europium concentration. From XRD(X-ray diffraction) and SEM(scanning electron microscope) results, we have verified that the phosphor particle was fabricated a spherical shape with $30{\sim}40nm$ particle size. From the photoluminescence results, the strong peak exhibits at 611 um and the luminescent intensity depends on europium concentration. $Gd_2O_3:Eu$ fine phosphor particle has shown excellent luminescent efficiency at 5 wt% of europium concentration. The phosphors calcinated at $500^{\circ}C$ have possessed the x-ray peaks corresponding to the cubic phase of $Gd_2O_3$. As calcinations temperature increased to $700^{\circ}C$, the new monoclinic phase has identified except cubic patterns. From the luminescent decay time measurements, mean lifetimes were $2.3{\sim}2.6ms$ relatively higher than conventional bulk phosphors. These results indicate that $Gd_2O_3:Eu$ nano phosphor is possible for the operation at the low x-ray dose, therefore, the application as medical imaging detector.

Dispersion and Shape Control on Nanoparticles of Gd2O3:Eu3+ Red Phosphor Prepared by Template Method (주형법으로 제조된 Gd2O3:Eu3+ 적색 형광체의 나노입자 분산 및 형상제어)

  • Park, Jeong Min;Ban, Se Min;Jung, Kyeong-Youl;Choi, Byung-Ki;Kang, Kwang-Jung;Kim, Dae-Sung
    • Korean Journal of Materials Research
    • /
    • v.27 no.10
    • /
    • pp.534-543
    • /
    • 2017
  • $Gd_2O_3:Eu^{3+}$ red phosphors were prepared by template method from crystalline cellulose impregnated by metal salt. The crystallite size and photoluminescence(PL) property of $Gd_2O_3:Eu^{3+}$ red phosphors were controlled by varying the calcination temperature and $Eu^{3+}$ mol ratio. The nano dispersion of $Gd_2O_3:Eu^{3+}$ was also conducted with a bead mill wet process. Dependent on the time of bead milling, $Gd_2O_3:Eu^{3+}$ nanosol of around 100 nm (median particle size : $D_{50}$) was produced. As the bead milling process proceeded, the luminescent efficiency decreased due to the low crystallinity of the $Gd_2O_3:Eu^{3+}$ nanoparticles. In spite of the low PL property of $Gd_2O_3:Eu^{3+}$ nanosol, it was observed that the photoluminescent property was recovered after re-calcination. In addition, in the dispersed nanosol treated at $85^{\circ}C$, a self assembly phenomenon between particles appeared, and the particles changed from spherical to rod-shaped. These results indicate that particle growth occurs due to mutual assembly of $Gd(OH)_3$ particles, which is the hydration of $Gd_2O_3$ particles, in aqueous solvent at $85^{\circ}C$.

Characterization of PET films coated with organic-inorganic hybrid coating system containing surface modified zirconia (표면 개질된 지르코니아를 함유한 유-무기 하이브리드 코팅액으로 도포된 PET 필름의 특성)

  • Lee, Soo;Kim, Sang Yup;Kim, Young Jun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.595-605
    • /
    • 2018
  • In recent years, researches on organic-inorganic coating films have conducted a nanocomposite system composed of organic resin matrices having excellent flexibility and chemical stability and inorganic materials having excellent mechanical properties. The o-phenylphenoxyethyl acrylate (OPPEA) used as the acrylate monomer has a high refractive index of 1.58, and the bisphenol A ethoxylate diacrylate (BAEDA) has a low refractive index but improves the chemical stability of the organic resin. In addition, zirconia used as an inorganic material exhibits excellent durability and optical properties. In this study, the BAEDA contents in acrylate monomer were controlled to produce a film with suitable optical transparency. And optimum conditions were established by comparing the changes in surface properties of PET films detected with pencil hardness tester, Abbe's refractometer, and UV-vis spectrophotometer. The hydrophobicity and the dispersibility of zirconia in acrylate monomer were much improved after modification with ${\gamma}$-methacryloxypropyltrimethoxysilane (MPS), which is a silane coupling agent. And the existence of ester C=O bond peak at $1716cm^{-1}$ introduced by MPS through FT-IR ATR spectrophotometer confirmed the completion of surface modification of zirconia with MPS. In addition, the presence of silicon atom on the surface modified zirconia was also proved using X-ray fluorescence spectrometer. When the photocurable hybrid coating was prepared by introducing chemically modified zirconia into acrylate monomer, the refractive index of this coated PET film was improved by 1.2%, compared to the only acrylate coated PET film. The homogeneous distribution of zirconia in acrylate coating layer on PET film was also identified through SEM/EDS mapping analysis technique.

Polymeric Micelle Using Poly((R)-3-hydroxybutyric acid)/Poly(ethylene glycol) Amphiphilic Block Copolymer for Drug Delivery System (Poly((R)-3-hydroxybutyric acid)/Poly(ethylene glycol) 양친성 블록 공중합체를 이용한 약물전달체용 고분자 미셀)

  • Jeong, Kwan-Ho;Kim, Young-Jin
    • Polymer(Korea)
    • /
    • v.30 no.6
    • /
    • pp.512-518
    • /
    • 2006
  • A biodegradable polymer poly((R) -3-hydroxybutyric acid) (PHB) was conjugated with a hydrophilic polymer poly(ethylene glycol) (PEG) by the ttansesterification reaction to form the amphiphilic block copolymer. PHB with low molecular weight ($3000{\sim}30000$) was appropriated for the drug delivery materials. High molecular weight PHB was hydrolyzed by an acid-catalyst to produce the low molecular weight one. Amphiphilic block copolymer was formed the self-assembled polymeric micelle system in the aqueous solution that the hydrophillic PEG was wraped the hydrophobic PHB. Generally, polymeric micelle forms the small particle between $10{\sim}200nm$. These polymeric micelle systems have been widely used for the drug delivery systems because they were biodegradable, biocompatible, non-toxic and patient compliant. The hydroxyl group of PEG was substituted with carboxyl group which has the reactivity to the ester group of PHB. Amphiphilic block copolymer was conjugated between PHB, and modified PEG at $176^{\circ}C$ which was higher than the melting point of PHB. Transesterification reaction was verified with DSC, FTIR, $^1H-NMR$. In the aqueous solution, critical micelle concentration (CMC) of the mPEG-co-PHB copolymer measured by the fluororescence scanning spectrometer was $5{\times}10^{-5}g/L$. The shape and size of the nanoparticle was taken by dynamic light scattering and atomic force microscopy. The size of the nanoparticle was about 130 nm and the shape was spherical. Our polymeric micelle system can be used as the passive targeting drug delivery system.

Synthesis and Photoluminescence Properties of Red-Emitting (Y,Al)VO4:Eu3+ Nanophosphors (적색 발광 (Y,Al)VO4:Eu3+ 형광체 나노입자의 합성과 발광 특성)

  • Seo, Jung-Hyun;Choi, Sung-Ho;Nahm, Sahn;Jung, Ha-Kyun
    • Korean Journal of Materials Research
    • /
    • v.22 no.2
    • /
    • pp.103-109
    • /
    • 2012
  • Red-emitting $Eu^{3+}$-activated $(Y_{0.95-x}Al_x)VO_4$ (0 < x $\leq$ 0.12) nanophosphors with the particle size of ~30 nm and the high crystallinity have been successfully synthesized by a hydrothermal reaction. In the synthetic process, deionized water as a solvent and ethylene glycol as a capping agent were used. The crystalline phase, particle morphology, and the photoluminescence properties of the excitation spectrum, emission intensity, color coordinates and decay time, of the prepared $(Y_{0.95-x}Al_x)VO_4:Eu^{3+}$ nanophosphors were compared with those of the $YVO_4:Eu^{3+}$. Under 147 nm excitation, $(Y_{0.95-x}Al_x)VO_4$ nanophosphors showed strong red luminescence due to the $^5D_0-^7F_2$ transition of $Eu^{3+}$ at 619 nm. The luminescence intensity of $YVO_4:Eu^{3+}$ enhanced with partial substitution of $Al^{3+}$ for $Y^{3+}$ and the maximum emission intensity was accomplished at the $Al^{3+}$ content of 10 mol%. By the addition of $Al^{3+}$, decay time of the $(Y,Al)VO_4:Eu^{3+}$ nanophosphor was decreased in comparison with that of the $YVO_4:Eu^{3+}$ nanophosphor. Also, the substitution of $Al^{3+}$ for $Y^{3+}$ invited the improvement of color coordinates due to the increase of R/O ratio in emission intensity. For the formation of transparent layer, the red nanophosphors were fabricated to the paste with ethyl celluloses, anhydrous terpineol, ethanol and deionized water. By screen printing method, a transparent red phosphor layer was formed onto a glass substrate from the paste. The transparent red phosphor layer exhibited the red emission at 619 nm under 147 nm excitation and the transmittance of ~80% at 600 nm.

Effect of the Crystalline Phase of Al2O3 Nanoparticle on the Luminescence Properties of YAGG:Ce3+ Phosphor under Vacuum UV Excitation (진공자외선 여기에 의한 YAGG:Ce3+ 형광체의 광발광 특성에 미치는 Al2O3 나노입자 원료의 결정상의 영향)

  • Wu, Mi-Hye;Choi, Sung-Ho;Jung, Ha-Kyun
    • Korean Journal of Materials Research
    • /
    • v.22 no.4
    • /
    • pp.195-201
    • /
    • 2012
  • $Ce^{3+}$-doped yttrium aluminum gallium garnet (YAGG:$Ce^{3+}$), which is a green-emitting phosphor, was synthesized by solid state reaction using ${\alpha}$-phase or ${\gamma}$-phase of nano-sized $Al_2O_3$ as the Al source. The processing conditions and the chemical composition of phosphor for the maximum emission intensity were optimized on the basis of emission intensity under vacuum UV excitation. The optimum heating temperature for phosphor preparation was $1550^{\circ}C$. Photoluminescence properties of the synthesized phosphor were investigated in detail. From the excitation and emission spectra, it was confirmed that the YAGG:$Ce^{3+}$ phosphors effectively absorb the vacuum UV of 120-200 nm and emit green light positioned around 530 nm. The crystalline phase of the alumina nanoparticles affected the particle size and the luminescence property of the synthesized phosphors. Nano-sized ${\gamma}-Al_2O_3$ was more effective for the achievement of higher emission intensity than was nano-sized ${\alpha}-Al_2O_3$. This discrepancy is considered to be because the diffusion of $Al^{3+}$ into $Y_2O_3$ lattice is dependent on the crystalline phase of $Al_2O_3$, which affects the phase transformation of YAGG:$Ce^{3+}$ phosphors. The optimum chemical composition, having the maximum emission intensity, was $(Y_{2.98}Ce_{0.02})(Al_{2.8}Ga_{1.8})O_{11.4}$ prepared with ${\gamma}-Al_2O_3$. On the other hand, the decay time of the YAGG:$Ce^{3+}$ phosphors, irrespective of the crystalline phase of the nano-sized alumina source, was below 1 ms due to the allowed $5d{\rightarrow}4f$ transition of the $Ce^{3+}$ activator.

The Study on Thermal Analysis and Thermodynamic Characteristics of Spinel Compounds(ZnCo2O4, NiCo2O4) (스피넬 구조를 가지는 전이금속화합물(ZnCo2O4, NiCo2O4)의 열적 분석 및 열역학적 특성 연구)

  • Kim, Jae-Uk;Ji, Myoung-Jin;Cha, Byung-Kwan;Kim, Chul-Hyun;Jang, Won-Cheoul;Kim, Jong-Gyu
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.2
    • /
    • pp.192-197
    • /
    • 2010
  • The spinel compound was obtained by the thermal decomposition of Zn-Co and Zn-Ni gel prepared by sol-gel method using oxalic acid as a chelating agent. The formation of spinel compound has been comfirmed by thermogravimetric analysis (TGA), x-ray powder diffraction (XRD) and infrared spectroscopy (IR). The particle size of 13 nm~16 nm was calculated by Scherrer's equation. The sol-gel method provides a practicable and effective route for the synthesis of the spinel compound at low temperature ($350^{\circ}C$). The kinetic parameters such as activation energy (Ea) and pre-exponential factor (A) for each compound were found by means of the Kissinger method and Arrhenius equation. The decomposition of spinel compound has an activation energy about 155 kJ/mol. Finally, the thermodynamic parameters (${\Delta}G^{\varphi}$, ${\Delta}H^{\varphi}$, ${\Delta}S^{\varphi}$) for decomposition of spinel compound was determined.