• Title/Summary/Keyword: 나노윤활유

Search Result 14, Processing Time 0.026 seconds

Enhancement of Corrosion Resistance of Lubricant-Infused Nanoporous Aluminum Anodic Oxide by Controlling Pore Shapes (알루미늄 양극산화피막의 기공 형상 제어를 통한 윤활유가 침지된 표면의 내식성 향상)

  • Lee, Jeong-Hun;Cho, Chang-Hwan
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.27-27
    • /
    • 2018
  • 알루미늄은 취약한 내식성을 보완하기 위하여 나노다공성의 산화물 피막을 형성하는 양극산화 처리를 주로 활용한다. 이러한 나노다공성 산화물 피막에 소수성 처리와 불용성의 윤활유를 침지하면 표면에 접촉하는 물을 비롯한 다른 유체들의 젖음성을 크게 감소시킬 수 있으며, 이로 인하여 부식성 물질이 다공성 구조물로 침입하는 것을 억제할 수 있다. 따라서 양극산화 피막에 윤활유 침지를 이용하여 알루미늄의 부식에 대한 저항성을 크게 향상시킬 수 있으며, 추가적으로 외부의 물리적인 손상에 대한 치유 능력을 얻을 수 있다. 이러한 성능뿐만 아니라 침지된 윤활유의 내구성은 나노다공성 산화피막의 물리적 형상에 따라 차이가 날 수 있다. 본 연구에서는 나노다공성의 양극산화 피막의 기공 구조를 다양하게 변화시켜 그 형상에 따라서 윤활유를 침지 후 알루미늄 소재의 내식성 및 자기 치유 특성의 차이에 대하여 알아보았다. 기공의 형상은 한쪽 끝이 막혀있는 기둥형, 후처리를 통한 확장된 기둥형 및 침상형의 기공 구조를 제조하였고, 전압제어를 통한 병목 형상의 기공 구조를 구현하여 그 특성 차이를 비교하였다. 기공들이 서로 고립된 형태를 가질수록 윤활유가 안정적으로 산화물에 침지될 수 있으며, 기공의 공간이 클수록 더 많이 윤활유를 포함하여 우수한 자기 치유 특성을 보여주었다. 병목 형상의 가공 구조는 내부의 충분한 크기의 기공 공간과 표면에 작은 기공을 가지고 있기 때문에 우수한 내구성과 자기 치유 특성을 보여준다.

  • PDF

Measuring Convective Heat Transfer Coefficient Around a Heated Fine Wire in Cross Flow of Nanofluids (나노유체의 수직유동 속에 놓인 가는 열선주위의 대류열전달계수 측정)

  • Lee, Shin-Pyo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.2
    • /
    • pp.117-124
    • /
    • 2008
  • Recent researches on nanofluids have mainly focused on the increase of thermal conductivity of nanofluids under static condition. The ultimate goal of using nanofluids, however, is to enhance the heat transfer performance under fluid flow. So it has been highly necessary to devise a simple and accurate measuring apparatus which effectively compares the heat transfer capability between the base and nanofluids. Though the convective heat transfer coefficient is not the complete index for the heat transfer capability, it might be one of useful indications of heat transfer enhancement. In this article, the working principles of experimental system for convective heat transfer coefficient around a heated fine wire in cross flow of nanofluids and its application example to three samples of nano lubrication oils are explained in detail.

Lubrication Analysis of Parallel Slider Bearing with Nanolubricant (나노윤활유를 사용하는 평행 슬라이더 베어링의 윤활해석)

  • TaeJo Park;JeongGuk Kang
    • Tribology and Lubricants
    • /
    • v.39 no.3
    • /
    • pp.87-93
    • /
    • 2023
  • Nanofluids are dispersions of particles smaller than 100 nm (nanoparticles) in base fluids. They exhibit high thermal conductivity and are mainly applied in cooling applications. Nanolubricants use nanoparticles in base oils as lubricant additives, and have recently started gathering increased attention owing to their potential to improve the tribological and thermal performances of various machinery. Nanolubricants reduce friction and wear, mainly by the action of nanoparticles; however, only a few studies have considered the rheological properties of lubricants. In this study, we adopt a parallel slider bearing model that does not generate geometrical wedge effects, and conduct thermohydrodynamic (THD) analyses to evaluate the effect of higher thermal conductivity and viscosity, which are the main rheological properties of nanolubricants, on the lubrication performances. We use a commercial computational fluid dynamics code, FLUENT, to numerically analyze the continuity, Navier-Stokes, energy equations with temperature-viscosity-density relations, and thermal conductivity and viscosity models of the nanolubricant. The results show the temperature and pressure distributions, load-carrying capacity (LCC), and friction force for three film-temperature boundary conditions (FTBCs). The effects of the higher thermal conductivity and viscosity of the nanolubricant on the LCC and friction force differ significantly, according to the FTBC. The thermal conductivity increases with temperature, improving the cooling performance, reducing LCC, and slightly increasing the friction. The increase in viscosity increases both the LCC and friction. The analysis method in this study can be applied to develop nanolubricants that can improve the tribological and cooling performances of various equipment; however, additional research is required on this topic.

The Performance of a Diesel Engine Using Lubricant Containing Nano-metal Powder (나노금속분말 윤활제를 적용한 산업용 디젤엔진의 성능)

  • Park, Kweon-Ha;Choi, Jae-Sung;Kim, Dae-Hyun;Kim, Young-Nam
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.670-676
    • /
    • 2008
  • A diesel engine requires a high Performance of lubrication because of the extreme conditions such as high temperature and pressure during combustion process in a cylinder. Many researches to improve the lubrication performance on the extreme condition have been executed. The lubricant oil suspended with nano-metal particles is the one of the measure. In this study, the nano-lubricant oil is applied on a commercial diesel engine, and the engine performance is tested. The results show the increase of maximum torque and the decrease of cylinder pressure, exhaust gas temperature, CO emission.

Lubrication Characteristics of Nano-oil with Different Surface Hardness of Sliding Members (나노 윤활유를 이용한 압축기 습동부 재질의 경도에 따른 윤활특성 평가)

  • Han, Young-Cheol;Ku, Bon-Cheol;Lee, Kwang-Ho;Hwang, Yu-Jin;Lee, Jae-Keun
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.916-921
    • /
    • 2009
  • In this study, lubrication characteristics of sliding members were compared with the change of the hardness of friction surfaces and the application of nano-oil. The materials of the specimens were gray cast iron (AISI 35, AISI 60) and nickel chromium molybdenum steel (AISI 4320). The Friction coefficients and the temperature variations of on the frictional surfaces were measured by disk-on-disk tribotester under the condition of fixed rotating speed. The friction surfaces were observed by scanning electron microscope (SEM). In the results, the friction coefficients of the disk surface were increased as hardness difference was increased. The friction coefficient lubricated in nano-oil was less than mineral oil. This is because a spherical nano particle plays a tiny ball bearing between the frictional surfaces, improved the lubrication characteristics.

  • PDF

Preparation and Characterization of Lubricating Oil-based Nanofluids Containing Carbon Nanoparticles (탄소 나노소재를 이용한 윤활유 기반 나노유체의 제조 및 평가)

  • Choi, Cheol;Jung, Mi-Hee;Oh, Jae-Myung
    • Korean Journal of Materials Research
    • /
    • v.19 no.3
    • /
    • pp.156-162
    • /
    • 2009
  • Lubricant-based nanofluids were prepared by dispersing carbon nanoparticles in gear oil. In this study, the effects of the particle size, shape and dispersity of the particles on the tribological properties of nanofluids were investigated. Dispersion experiments were conducted with a high-speed bead mill and an ultrasonic homogenizer, and the surfaces of the nanoparticles were simultaneously modified with several dispersants. The effective thermal conductivity of the nanofluids was measured by the transient hot-wire method, and the tribological behaviors of the nanofluids were also investigated with a disk-on-disk tribo-tester. The results of this study clearly showed that the combination of the nanoparticles, the deagglomeration process, the dispersant and the dispersion solvent is very important for the dispersity and tribological properties of nanofluids. Lubricant-based nanofluids showed relatively low thermal conductivity enhancement, but they were highly effective in decreasing the frictional heat that was generated. For nanofluids containing 0.1vol.% graphite particles in an oil lubricant, The friction coefficient in the boundary and fluid lubrication range was reduced to approximately 70% of the original value of pure lubricant.

Performance Evaluation of Nano-Lubricants at Thrust Slide-Bearing of Scroll Compressor (나노 윤활유를 이용한 스크롤 압축기 스러스트 베어링의 윤활특성 평가)

  • Cho, Han-Jong;Cho, Yong-Il;Cho, Sang-Won;Lee, Jae-Keun;Park, Min-Chan;Kim, Dae-Jin;Lee, Kwang-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.1
    • /
    • pp.121-125
    • /
    • 2012
  • This paper presents the friction and anti-wear characteristics of nano-oil with a mixture of a refrigerant oil and carbon nano-particles in the thrust slide-bearing of scroll compressors. Frictional loss in the thrust slide-bearing occupies a large part of total mechanical loss in scroll compressors. The characteristics of friction and anti-wear using nano-oil is evaluated using the thrust bearing experimental apparatus for measuring friction surface temperature and the coefficient of friction at the thrust slide-bearing as a function of normal loads up to 4,000 N and rotating speed up to 3,200 rpm. It is found that the coefficient of friction increases with decreasing rotating speed and normal force. The friction coefficient of carbon nano-oil is 0.023, while that of pure oil is 0.03 under the conditions of refrigerant gas R-22 at the pressure of 5 bars. It is believed that carbon nano-particles can be coated on the friction surfaces and the interaction of nano-particles between surfaces can be improved the lubrication in the friction surfaces. Carbon nano-oil enhances the characteristics of the anti-wear and friction at the thrust slide-bearing of scroll compressors.

Comparative Study to the Tribological Characteristics of Graphite Nano Lubricants after Thermal Degradation (그라파이트 나노윤활유의 열화 후 윤활 특성 비교 연구)

  • Lee, Jae-Keun;Lee, Chang-Gun;Hwang, Yu-Jin;Choi, Young-Min;Park, Min-Chan;Choi, Cheol;Oh, Je-Myung
    • Tribology and Lubricants
    • /
    • v.24 no.4
    • /
    • pp.190-195
    • /
    • 2008
  • Many researchers have tried to improve the tribological characteristics of lubricant by adding various nano particles in the base lubricant. But the reliability evaluation of the lubricants are rarely performed in its real operation condition. In this study, the physical property and the tribological characteristics of the graphite nano lubricant were evaluated and compared with raw lubricant after thermal degrading. In order to evaluate the tirbological characteristics, the disk-on-disk tribotester was adopted to measure the friction coefficient of the graphite nano lubricants. Also the temperature variations of friction surfaces were measured by the thermocouple installed on the fixed plate in the test chamber of the tribotester. The kinematic viscosity was measured using a capillary viscometer on the temperatures of 40, 60 and $80^{\circ}C$. The results showed that the graphite nano lubricant had lower friction coefficient and less wear on the friction surfaces than raw lubricant. After thermally degrading, the friction coefficients of graphite nano lubricant increased, but the friction coefficients after thermal degradation were still maintained lower than those of raw lubricant.